سفارش تبلیغ
صبا ویژن
1 2 >

انواع دیگر نیروگاهها وجود دارد که در نوع طراحی و ماده خنک کننده و ماده میانی تفاوت دارند.در انگلیس نیروگاههایی رواج دارند که از گاز ( دی اکسید کربن ) بعنوان ماده خنک کننده استفاده میکند و ماده میانی آن گرافیت است. نوع جدیدی از این نیروگاه ها که AGR نامیده میشوند اکنون ساخته شده اند. در این نوع از نیروگاهها میتوان از اورانیوم طبیعی بعنوان سوخت استفاده کرد. در روسیه نیروگاههایی با گرافیت بعنوان ماده میانی و آب بعنوان ماده خنک کننده ساخته میشد. برای تامین سوخت این نیروگاهها اورانیوم باید کمی غنی میشد. نیروگاه چرنویل از این نوع بود.

نیروگاههای "پرورش دهنده سریع" یا FBR نوعی از نیروگاهها هستند که در آنها یا ماده میانی وجود ندارد و یا ماده میانی نظیر سدیم مایع مورد استفاده قرار میگیرد که سرعت نوترونها را کمتر کاهش میدهد.به این ترتیب نوترون پر سرعت در واکنشهای هسته ای مورد استفاده قرار میگیرد. در سوخت این نوع از نیروگاهها ?? تا ?? درصد پلوتونیوم وجود دارد و یا از اورانیوم با درصد بالایی از ایزوتوپ ??? استفاده میگردد. در این نوع از نیروگاهها با تبدیل اورانیوم ??? که ماده ای شکافت پذیر نیست به پلوتونیوم ??? که شکافت پذیری بالایی دارد ? عملا سوخت تولید میشود. در برخی از این نیروگاهها میزان سوخت تولید شده از سوخت مصرف شده بیشتر است. در فرانسه نوعی از این نیروگاهها ساخته شده است. در ژاپن مدل آزمایشی آن با موفقیت تست گردیده است. نوع دیگر نیروگاهها که اختلاف در محل ساخت اولین نمونه تجاری آن بالا گرفته بود نیروگاه همجوشی هسته ای است که درصورت موفقیت در ساخت آن بدون تولید پسماند رادیو اکتیو و بدون نیاز به اورانیوم از آب بعنوان سوخت استفاده میکند. ژاپن بسختی از ساخت آن در کشور خود حمایت کرد لیکن نهایتا تصمیم گرفته شد این نیروگاه در فرانسه ساخته شود.در صورتی که ساخت این نیروگاهها بصورت تجاری و به تعداد قابل توجه عملی گردد ? انقلابی در زمینه تولید انرژی صورت خواهد گرفت.


 
 

نیروگاه آب سنگین HWR

مشابه با نیروگاههای LWR نیروگاههای HWR نیز انواع مختلفی دارند. معروفترین نوع نیروگاه آب سنگین CANDU نام دارد و ساخت کشور کاناداست.

 در این نیروگاهها از آب سنگین بعنوان ماده میانی و ماده خنک کننده استفاده میشود. تعداد ?? نیروگاه آب سنگین در ? کشور جهان در مجموع ظرفیت ??.? گیگا وات را دارند. ? نیروگاه از این نوع در حال ساخت است.تجربه عملیاتی بر روی این نیروگاهها در مجموع ??? نیروگاه در سال است که بسیار پایین تر از تجربه عملیاتی نیروگاههای آب سبک است. قدرت جذب پایین نوترون در آب سنگین امکان استفاده از اورانیوم با درصد کم اورانیوم ??? را بعنوان سوخت در نیروگاههای آب سنگین فراهم میکند. این نیروگاهها میتوانند از اورانیوم طبیعی ( بدون نیاز به غنی سازی ) بعنوان سوخت استفاده نمایند.در این نوع نیروگاهها بدون نیاز به اعمال تغییر عمده در طراحی ? امکان استفاده از سوخت مصرف شده نیروگاههای آب سبک بعنوان سوخت وجود دارد.این قابلیت باعث میشود استفاده بیشتر از منابع برای تولید انرژی مهیا گردیده و مشکل دفع پسماندهای هسته ای کاهش یابد. کشورهایی که دارای تکنولوژی ساخت نیروگاههای آب سنگین هستند ? عمدتا کشورهای پیشرفته صنعتی هستند. طرحهای جدید نیروگاههای آب سنگین عمدتا در کشورهای کانادا و هند در حال توسعه هستند. در کشور چین در یک کار مشترک جهانی شرکتهایی از کانادا ? چین ? ژاپن ? جمهوری کره و آمریکا در حال ساخت دو نیروگاه آب سنگین ??? مگاواتی با ? واحد هستند. واحد یک نیروگاه کینشان در اواخر سال ???? پس از ?? ماه از شروع عملیات ساخت آن ? با ظرفیت کامل آغاز به کار کرد. در هند ساخت دو نیروگاه ??? مگاواتی در تاراپور در اواخر سال ???? شروع شد که از تکنولوژی پیشرفته ای استفاده مینماید.

 

آب سنگین

اتم هیدروژن بطور معمول از یک پروتون و یک الکترون تشکیل شده است. ایزوتوپ دیگری از این اتم ( دوتریوم ) دارای یک نوترون است و به این ترتیب از یک پروتون و یک نوترون در هسته و یک الکترون تشکیل شده است. دوتریوم با حرف لاتین D نمایش داده میشود و از نظر خواص شیمیایی تفاوتی با هیدروژن معمولی ندارد.در آب سنگین اتمهای دوتریوم با اکسیژن ترکیب شده اند و به این ترتیب از آب معمولی سنگین تر است ( حدود ?? درصد ). آب سنگین با D2O نمایش داده میشود و همان خواص شیمیایی آب سبک را داراست. در آب موجود در طبیعت ? درصد کمی آب سنگین وجود دارد.آب سنگین تولید نمیشود بلکه با روشهایی از آب سبک جدا میگردد.

 

 کشور کانادا بزرگترین تولید کننده آب سنگین در جهان است. لازم است توجه داشته باشید که دوتریوم ایزوتوپی پایدار است و به این ترتیب آب سنگین رادیو اکتیو نیست و هیچ ضرری برای بشر و دیگر موجودات زنده ندارد.آب سنگین مولکولی کم یاب است و از هر ?? میلیون مولکول آب یکی مولکول آب سنگین است.آب سنگین ? ماده میانی بسیار خوبی است. ماده میانی خوب ماده ای است که قدرت کاهش سرعت نوترونهای پر انرژی را داشته باشد و قابلیت جذب نوترون آن پایین باشد.

 

نیروگاه آب سبک LWR

عملا شامل نیروگاههای آب جوشان BWR  و نیروگاهای آب تحت فشار PWR هستند. در جزئیات طراحی و عملکرد این نیروگاهها ممکن است تفاوتهایی وجود داشته باشد اما تحت دو عنوان فوق قابل طبقه بندی هستند. برای مثال نیروگاه بوشهر از نوع PWR طرح روسی است. نیروگاههای قبلی روسیه PWR مدل WWER-1000  / V320 بوده اند لیکن مدل جدیدتر WWER-1000 / V392 برای ایران ? چین و هند طراحی شده است. علاوه بر این دو واحد از این نوع برای نوورونژ طراحی گردیده است.

در مجموع تعداد ??? نیروگاه آب سبک ( BWR یا PWR) در ?? کشور جهان در حال کار است که ظرفیتی برابر با ??? گیگا وات دارند. ?? نیروگاه دیگر در حال ساخت است. تجربه عملیاتی موجود بر روی این نیروگاهها ???? نیروگاه در سال است. در کشورهای مختلفی از جهان کار تحقیقاتی برای بهبود طراحی و ساخت این نیروگاهها در حال انجام است. در حال حاضر ?? کشور جهان در کارگروه فنی تکنولوژی های پیشرفته طراحی نیروگاهها آب سبک شرکت دارند که تحت سرپرستی آژانس بین المللی انرژی اتمی تشکیل میگردد. ( آرژانتین و هند از بین کشورهای در حال توسعه عضو این کارگروه هستند و البته ایران عضو نیست )

عمده تلاش در این کارگروه ها افزایش برتری اقتصادی بکارگیری نیروگاههای اتمی و افزایش قابلیت اطمینان و امنیت این نیروگاهها است.

 


نیروگاه آب تحت فشار PWR

مشابه نیروگاههای آب جوشان BWR این نیروگاهها نیز از آب سبک بعنوان ماده خنک کننده و ماده میانی استفاده میکنند. تفاوت این نیروگاهها در این است که این آب ? تحت فشار بالا ( ?? اتمسفر ) قرار دارد و نقطه جوش آن در دمایی بالای ??? درجه است. به این ترتیب در این نیروگاهها در حالت عادی ( تحت کنترل ) آب به صورت مایع ولی دمای آن  بالای ??? درجه ( ??? درجه سانتیگراد ) است.

این آب بوسیله پمپ از رادیاتورهای واحد انتقال ? عبور و گرمای خود را به آبی که درون محفظه ای مجزا است منتقل مینماید و پس از خنک شدن به محیط اصلی نیروگاه بازمیگردد. آب محفظه دوم با دریافت گرمای آب تحت فشار به بخار تبدیل شده و پره های توربین را برای تولید انرژی الکتریکی به گردش درمیاورد.به این ترتیب هر دو اشکال ذکر شده در نیروگاههای آب جوشان ? در این نوع از نیروگاهها برطرف شده است. مشکل این نیروگاهها ? تکنولوژی پیشرفته تر مورد نیاز برای ساخت آن و به طبع هزینه بالاتر ساخت آن است.نیروگاه اتمی بوشهر از این نوع است.

 

نیروگاه آب جوشان BWR

در این نوع از نیروگاهها آب معمولی ( آب سبک یا H2O ) بعنوان ماده میانی و ماد خنک کننده عمل مینماید. نوترونهای پر انرژی با برخورد با اتمهای هیدروژن آب انرژی خود را از دست داده و از سرعت آنها کاسته میشود. همچنین آب ? گرمای حاصل از واکنشهای هسته ای را جذب و به بخار تبدیل میشود. به این ترتیب میله های سوخت خنک میشوند و بخار حاصل برای چرخاندن توربین و تولید انرژی الکتریکی مورد استفاده قرار میگیرد. این بخار پس از سرد شدن دوباره به محیط اصلی نیروگاه پمپ شده و مورد استفاده قرار میگیرد. این نوع نیروگاهها جزو ساده ترین انواع نیروگاهها هستند لیکن از دو جهت دارای ایمنی ضعیفی هستند:

?- وقتی آب موجود در بین میلهای سوخت به بخار تبدیل میشود ? با توجه به این که در حالت گازی فاصله بین مولکولها افزایش میابد ? احتمال برخورد نوترونهای پر انرژی با اتمهای مولکول کاهش میابد بنابر این آب بخار شده که حجمی از فضای بین میله های سوخت را اشغال کرده است نمیتواند بطور کامل وظیفه ماده میانی را انجام دهد. البته با کنترلهای دقیق ? سرعت واکنشهای هسته ای کنترل خواهند شد ولی عمل کنترل ? حساستر خواهد بود. همچنین میلهای سوخت با سرعت بیشتری فرسوده خواهند شد.به هر حال درصورتی که در کنترل نیروگاه خللی وارد شود حجم بخار موجود در بین میلها افزایش میابد که خود موجب سرعت گرفتن نیروگاه و تولید بخار بیشتر میشود. به این ترتیب نیروگاه با سرعت بیشتری ناپایدار میگردد.

?- بخار حاصل که از محیط اصلی نیروگاه و از مجاورت مواد رادیواکتیو خارج شده است برای به گردش درآوردن توربین مورد استفاده قرار میگیرد که احتمال نشط مواد رادیو اکتیو به خارج را افزایش میدهد.

 علرغم این در جهان تعداد قابل توجه ای از این نیروگاهها مورد استفاده قرار میگیرد. در آلمان تعداد زیادی از این نیروگاهها در حال کار است.


ساختار یک نیروگاه اتمی

نیروگاه اتمی از نظر نوع استفاده به دو نوع تحقیقاتی و  تولید انرژی ( تجاری ) تقسیم میشود. در نیروگاههای اتمی تحقیقاتی ? گرمای حاصل از واکنشهای هسته ای مورد استفاده قرار نمیگیرد. این نیروگاهها عمدتا برای انجام تحقیقات و یا تولید مواد هسته ای مفید نظیر رادیو دارو ها مورد استفاده قرار میگیرند. ساخت این نیروگاهها ساده تر است و معمولا ابعاد کوچکتری دارند. یک نوع از این نیروگاهها از قبل از انقلاب در دانشگاه تهران راه اندازی گردیده است. در نیروگاههای تجاری عمدتا هدف تولید انرژی الکتریکی با استفاده از گرمای حاصل از واکنشهای هسته ای است.

 

 

مشکل عمده در هر نیروگاه حفظ امنیت آن است. در صورتی که سرعت واکنشهای  هسته ای از کنترل خارج شود امکان انفجار نیروگاه وجود دارد. آخرین مورد انفجار نیروگاه چرنوویل بود که خسارات فراوانی برجا گذاشت. علاوه بر کنترل سرعت واکنشهای هسته ای باید مراقب عدم نشط مواد رادیواکتیو به محیط خارج بود. همچنین سلامت کارکنان نیروگاه و حفاظت آنها در مقابل تشعشع مواد رادیو اکتیو و حفاظت نیروگاه در مقابل حملات نظامی ? تروریستی و حوادث طبیعی نظیر سیل و زلزله در بحث امنیت نیروگاه مطرح است. 

نیروگاه اتمی دارای احزاء متفاوتی است. مهمترین این اجزا از نظر درک نحوه عملکرد آن به شرح زیر است:

?- ماده خنک کننده : ماده ای است که با برداشت گرما از روی میله های سوخت ? میله های سوخت را خنک و با انتقال گرما به واحد تولید برق ? استفاده از انرژی حاصل از واکنشهای هسته ای به انرژی الکتریکی را فراهم میکند.

?- ماده میانی : ماده ای است که در بین میله های سوخت قرار میگیرد و انرژی نوترونها را کاهش میدهد. کاهش انرژی نوترونها به منظور کنترل سرعت واکنشهای  هسته ای ضروریست.

?- میله سوخت: میله ای است از جنس ترکیبات اورانیوم با درصد مناسب از ایزوتوپهای مختلف که با توجه به نوع طراحی نیروگاه متفاوت است. شکل ? اندازه ? فاصله و نحوه قرار گیری میله های سوخت از موارد مهمی است که بر اساس طراحی نیروگاه مشخص میگردد. میله های سوخت در اثر فعل وانفعالات هسته ای تولید انرژی مینمایند. در صورتی که پس از استفاده از میله های سوخت استفاده بیشتر از آنها برای تولید انرژی ممکن نباشد ? میله ها از نیروگاه خارج و سوخت مصرف شده تلقی میگردند.

?- واحد انتقال گرما : این واحد با انتقال ماده خنک کننده به واحد تولید انرژی گرمای ماده خنک کننده را انتقال و سپس آنرا به محیط اصلی نیروگاه باز میگرداند تا دوبار به جذب انرژی میله های سوخت بپردازد.

?- واحد تولید انرژی : با جذب انرژی از واحد انتقال ? آب را تبدیل به بخار مینماید. این بخار باعث به حرکت درآمدن توربین ژنراتور و تولید انرژی الکتریکی میگردد. 

?- واحد مدیریت : این واحد عهده دار مشاهده و کنترل عملکرد اجزاء مختلف نیروگاه است.

 

اولین دیدگاه را شما بگذارید

  

اطلاعات اولیه

اورانیوم و توریم از جمله عناصر کمیاب هستند. قشر جامد کره زمین بطور متوسط به ازای هر تن وزن شامل چهار گرم اورانیوم است. یعنی اورانیوم همانقدر است که روی یا سرب یا قلع. بعضی از انواع سنگ های خارا حتی دارای 30 گرم اورانیوم به ازای هر تن از وزن خود می‌باشند.

مهمترین ماده معدنی اورانیوم عبارتست از پیچ بلِند (Pitch-blende) که نام علمی اش اکسید بی‌آب اورانیوم 358 می‌باشد. این سنگ معدنی در قسمت فوقانی قشر جامد کره زمین تحت تاثیر جریانات آب تغییر می‌یابد و هیدرات های مختلف بوجود می‌آورد و اگر تغییرات و ترکیبات پیشرفت کند، فسفات‌های مختلف مواد معدنی دیگری که خیلی پیچیده هستند، ایجاد می‌شود. معادنی که جلوتر از همه حتی در دوران قدیم مورد بهره برداری قرار گرفته‌اند، در زیر آمده است.

معدن نواحی بوهم (Bohemia)

در حال حاضر ، مهمترین تهیه کنندگان اورانیوم در جهان عبارتند: از کانادا ، کنگوی قدیم ، بلژیک ، ممالک متحده آمریکای شمالی و اتحادیه آفریقای جنوبی و حقیقت این است که درباره روسیه اطلاع دقیقی در دست نیست و احتمالاً محصول آن در حدود هر یک از ممالک ذکر شده است. بعد از این 4 کشور نوبت به استرالیای شمالی ، فرانسه ، چکسلواکی ، ممالک آفریقای جنوبی ، کرن وال و چین می‌رسد.

تا سالهای اخیر در کانادا تنها معدنی که مورد بهره برداری قرار گرفت، عبارت بود از معدن دریاچه بزرگ اورز (Ours) که در شمال کانادا واقع است. در این معدن پیچ بلند با انواع سولفورهای دیگر مخلوط است. اخیراً دو معدن مهم دیگر در این کشور کشف کرده‌اند. گرچه مواد معدنی آنها شامل مقدار کمی اورانیوم می‌باشد، لیکن مقدار کل مواد معدنی در این دو نقطه فوق‌العاده قابل ملاحظه است. یکی از این دو معدن در ناحیه دریاچه بیورلاج (Beaverlodge) و دیگری در ناحیه دریاچه بیند ریور (Bind-River) واقع است.

معادن بسیار غنی کنگو

این معادن ، متعلق به اتحادیه معدنی کاتانکای (Katanga) علیا هستند و عموماً از پیچ بلند تشکیل یافته‌اند. در کشور فرانسه چهار ناحیه مختلف وجود دارد که در آنها اورانیوم استخراج می‌شود که عبارتند از :


  • معادن کروزی (Crouzille) در ایالت هوت وین (Haute-viene)
  • معادن گروری (Grury) در ایالت سون لوار (Saoneet-Loire)
  • معادن لاشو (Lochaux) در ایالت پوی دو دوم (Puy-de-dome)
  • معادن وانده (Vendee)

رگه پیچ بلند معادن کروزی ، بطور متوسط شامل 10% اورانیوم است. معادن گروری در عین حال که دارای مقدار کمی اورانیوم هستند، بازهم مورد استفاده می‌باشند و از آن بهره برداری می‌شود. در ناحیه لاشو به نظر می‌رسد که معادن جنگلهای سیاه بسیار مهم هستند و بالاخره تجسساتی که در ناحیه وانده به عمل آمده است، نوید بخش می‌باشد. به نظر می‌رسد سالانه در تمام دنیا بیش از چند صد هزار تن اورانیوم تولید و به بهره برداری می‌رسد. در برخی معادن آفریقای جنوبی ، بعد از استخراج طلا از ماده معدنی ، باقیمانده ماده را برای تهیه اورانیوم مورد استفاده قرار می‌دهند.


img/daneshnameh_up/0/0f/thorium.jpg
سنگ معدن توریم

معادن توریم

سنگ معدنی مونازیت توریم

معادن توریم ، فراوانتر از اورانیوم است و ماده معدنی اصلی آن که عبارتست از فسفات خاصی که ترکیب آن بسیار پیچیده است، مونازیت (Monazite) نام دارد. مهمترین معادن آن در هندوستان جنوبی و برزیل واقع است. معادن دیگری که وسعت آن چندان زیاد نیست، ولی از حیث میزان توریم بسیار غنی می‌باشد، در جزیره سیلان کشف شده است و نیز در این اواخر منابع مهمی شامل مونازیت در جزایر ماداگاسکار کشف کرده‌اند.

سنگ معدنی توریت توریم

سنگ معدنی دیگری از توریم که توریت (Thorite) نام دارد، در استرالیا ، برزیل ، ماداگاسکار ، اسکاندیناویا ، بریتانیا ، ایالت متحده و روسیه وجود دارد. به هیچ وجه ممکن نیست که با دقت معین نماییم که در آینده چه میزان اورانیوم و توریوم در جهان استخراج خواهد شد و به مصرف تهیه انرژی خواهد رسید. البته با تولید مصنوعی این مواد رادیواکتیو و نیز سایر مکانیزم‌های تولید انرژی هسته‌ای از جمله همجوشی‌های کنترل شده ، سبب شده است که دیگر مشکل جستجو و کشف معادن اورانیوم و توریم وجود نداشته باشد و یا این نیاز از راه های دیگر برطرف می‌شود.

تبدیل توریم به اورانیوم

توریم را در کوره اتمی توسط نوترون بمباران می‌کنند. این عنصر پس از یک سری تغییرات رادیواکتیو به اورانیوم 233 تبدیل می‌شود که مانند اورانیوم 235 و پلوتونیم 239 ، توسط نوترونهای حرارتی شکافته می‌شود.

اولین دیدگاه را شما بگذارید

  

چرخه سوخت هسته ای: از استخراج اورانیوم تا تولید انرژی

اورانیوم که ماده خام اصلی مورد نیاز برای تولید انرژی در برنامه های صلح آمیز یا نظامی هسته ای است، از طریق استخراج از معادن زیرزمینی یا سر باز بدست می آید. اگر چه این عنصر بطور طبیعی در سرتاسر جهان یافت میشود اما تنها حجم کوچکی از آن بصورت متراکم در معادن موجود است.

هنگامی که هسته اتم اورانیوم در یک واکنش زنجیره ای شکافته شود مقداری انرژی آزاد خواهد شد.

برای شکافت هسته اتم اورانیوم، یک نوترون به هسته آن شلیک میشود و در نتیجه این فرایند، اتم مذکور به دو اتم کوچکتر تجزیه شده و تعدادی نوترون جدید نیز آزاد میشود که هرکدام به نوبه خود میتوانند هسته های جدیدی را در یک فرایند زنجیره ای تجزیه کنند

مجموع جرم اتمهای کوچکتری که از تجزیه اتم اورانیوم بدست می آید از کل جرم اولیه این اتم کمتر است و این بدان معناست که مقداری از جرم اولیه که ظاهرا ناپدید شده در واقع به انرژی تبدیل شده است، و این انرژی با استفاده از رابطه

E=MC?

 یعنی رابطه جرم و انرژی که آلبرت اینشتین نخستین بار آنرا کشف کرد قابل محاسبه است.

اورانیوم به صورت دو ایزوتوپ مختلف در طبیعت یافت میشود. یعنی اورانیوم

U??? یا U???

 که هر دو دارای تعداد پروتون یکسانی بوده و تنها تفاوتشان در سه نوترون اضافه ای است که در هسته

U???

 وجود دارد. اعداد ??? و ??? بیانگر مجموع تعداد پروتونها و نوترونها در هسته هر کدام از این دو ایزوتوپ است

برای بدست آوردن بالاترین بازدهی در فرایند زنجیره ای شکافت هسته باید از اورانیوم ??? استفاده کرد که هسته آن به سادگی شکافته میشود. هنگامی که این نوع اورانیوم به اتمهای کوچکتر تجزیه میشود علاوه بر آزاد شدن مقداری انرژی حرارتی دو یا سه نوترون جدید نیز رها میشود که در صورت برخورد با اتمهای جدید اورانیوم بازهم انرژی حرارتی بیشتر و نوترونهای جدید آزاد میشود

اما بدلیل "نیمه عمر" کوتاه اورانیوم ??? و فروپاشی سریع آن، این ایزوتوپ در طبیعت بسیار نادر است بطوری که از هر ???? اتم اورانیوم موجود در طبیعت تنها هفت اتم از نوع

U???

 بوده و مابقی از نوع سنگینتر

U???

 است

کشورهای اصلی تولید کننده اورانیوم

سترالیا  چین  کانادا  قزاقستان   امیبیا    نیجر   روسیه   ازبکستان

سنگ معدن اورانیوم بعد از استخراج، در آسیابهائی خرد و به گردی نرم تبدیل میشود. گرد بدست آمده سپس در یک فرایند شیمیائی به ماده جامد زرد رنگی تبدیل میشود که به کیک زرد موسوم است. کیک زرد دارای خاصیت رادیو اکتیویته است و ?? تا ?? درصد آنرا اورانیوم تشکیل میدهد.

دانشمندان هسته ای برای دست یابی هرچه بیشتر به ایزوتوپ نادر

 U???

 که در تولید انرژی هسته ای نقشی کلیدی دارد، از روشی به موسوم به غنی سازی استفاده می کنند. برای این کار، دانشمندان ابتدا کیک زرد را طی فرایندی شیمیائی به ماده جامدی به نام هگزافلوئورید اورانیوم تبدیل میکنند که بعد از حرارت داده شدن در دمای حدود ?? درجه سانتیگراد به گاز تبدیل میشود

 

کیک زرد دارای خاصیت رادیو اکتیویته است و ?? تا ?? درصد آنرا اورانیوم تشکیل میدهد

هگزافلوئورید اورانیوم که در صنعت با نام ساده هگز شناخته میشود ماده شیمیائی خورنده ایست که باید آنرا با احتیاط نگهداری و جابجا کرد. به همین دلیل پمپها و لوله هائی که برای انتقال این گاز در تاسیسات فراوری اورانیوم بکار میروند باید از آلومینیوم و آلیاژهای نیکل ساخته شوند. همچنین به منظور پیشگیری از هرگونه واکنش شیمیایی برگشت ناپذیر باید این گاز را دور از معرض روغن و مواد چرب کننده دیگر نگهداری کرد

هدف از غنی سازی تولید اورانیومی است که دارای درصد بالایی از ایزوتوپ

U???

 باشد.

اورانیوم مورد استفاده در راکتورهای اتمی باید به حدی غنی شود که حاوی ? تا ? درصد اورانیوم ??? باشد، در حالی که اورانیومی که در ساخت بمب اتمی بکار میرود حداقل باید حاوی ?? درصد اورانیوم ??? باشد.

یکی از روشهای معمول غنی سازی استفاده از دستگاههای سانتریفوژ گاز است.

سانتریفوژ از اتاقکی سیلندری شکل تشکیل شده که با سرعت بسیار زیاد حول محور خود می چرخد. هنگامی که گاز هگزا فلوئورید اورانیوم به داخل این سیلندر دمیده شود نیروی گریز از مرکز ناشی از چرخش آن باعث میشود که مولکولهای سبکتری که حاوی اورانیوم ??? است در مرکز سیلندر متمرکز شوند و مولکولهای سنگینتری که حاوی اورانیوم ??? هستند در پایین سیلندر انباشته شوند

برای مشاهداه ی تصاویر رآکتور اتمی و انواع سلاح های هسته ای اینجا را کلیک کنید

اورانیوم ??? غنی شده ای که از این طریق بدست می آید سپس به داخل سانتریفوژ دیگری دمیده میشود تا درجه خلوص آن باز هم بالاتر رود. این عمل بارها و بارها توسط سانتریفوژهای متعددی که بطور سری به یکدیگر متصل میشوند تکرار میشود تا جایی که اورانیوم ??? با درصد خلوص مورد نیاز بدست آید.

آنچه که پس از جدا سازی اورانیوم ??? باقی میماند به نام اورانیوم خالی یا فقیر شده شناخته میشود که اساسا از اورانیوم ??? تشکیل یافته است. اورانیوم خالی فلز بسیار سنگینی است که اندکی خاصیت رادیو اکتیویته دارد و از آن برای ساخت گلوله های توپ ضد زره پوش و اجزای برخی جنگ افزار های دیگر از جمله منعکس کننده نوترونی در بمب اتمی استفاده میشود.

یک شیوه دیگر غنی سازی روشی موسوم به دیفیوژن یا روش انتشاری است.

دراین روش گاز هگزافلوئورید اورانیوم به داخل ستونهایی که جدار آنها از اجسام متخلخل تشکیل شده دمیده میشود. سوراخهای موجود در جسم متخلخل باید قدری از قطر مولکول هگزافلوئورید اورانیوم بزرگتر باشد.

در نتیجه این کار مولکولهای سبکتر حاوی اورانیوم ??? با سرعت بیشتری در این ستونها منتشر شده و تفکیک میشوند. این روش غنی سازی نیز باید مانند روش سانتریفوژ بارها و باره تکرار شود

راکتور هسته ای وسیله ایست که در آن فرایند شکافت هسته ای بصورت کنترل شده انجام میگیرد. انرژی حرارتی بدست آمده از این طریق را می توان برای بخار کردن آب و به گردش درآوردن توربین های بخار ژنراتورهای الکتریکی مورد استفاده قرار داد.

اورانیوم غنی شده ، معمولا به صورت قرصهائی که سطح مقطعشان به اندازه یک سکه معمولی و ضخامتشان در حدود دو و نیم سانتیمتر است در راکتورها به مصرف میرسند. این قرصها روی هم قرار داده شده و میله هایی را تشکیل میدهند که به میله سوخت موسوم است. میله های سوخت سپس در بسته های چندتائی دسته بندی شده و تحت فشار و در محیطی عایقبندی شده نگهداری میشوند.

در بسیاری از نیروگاهها برای جلوگیری از گرم شدن بسته های سوخت در داخل راکتور، این بسته ها را داخل آب سرد فرو می برند. در نیروگاههای دیگر برای خنک نگه داشتن هسته راکتور ، یعنی جائی که فرایند شکافت هسته ای در آن رخ میدهد ، از فلز مایع (سدیم) یا گاز دی اکسید کربن استفاده می شود

برای تولید انرژی گرمائی از طریق فرایند شکافت هسته ای ، اورانیومی که در هسته راکتور قرار داده میشود باید از جرم بحرانی بیشتر (فوق بحرانی) باشد. یعنی اورانیوم مورد استفاده باید به حدی غنی شده باشد که امکان آغاز یک واکنش زنجیره ای مداوم وجود داشته باشد

1- هسته راکتور

2-پمپ خنک کننده

3- میله های سوخت

4- مولد بخار

5- هدایت بخار به داخل توربین مولد برق

 

برای تنظیم و کنترل فرایند شکافت هسته ای در یک راکتور از میله های کنترلی که معمولا از جنس کادمیوم است استفاده میشود. این میله ها با جذب نوترونهای آزاد در داخل راکتور از تسریع واکنشهای زنجیره ای جلوگیری میکند. زیرا با کاهش تعداد نوترونها ، تعداد واکنشهای زنجیره ای نیز کاهش میابد.

حدودا ??? نیروگاه هسته ای در سرتاسر جهان فعال هستند که تقریبا ?? درصد کل برق مصرفی در جهان را تامین میکنند. از جمله کاربردهای دیگر راکتورهای هسته ای، تولید نیروی محرکه لازم برای جابجایی ناوها و زیردریایی های اتمی است

برای بازیافت اورانیوم از سوخت هسته ای مصرف شده در راکتور از عملیات شیمیایی موسوم به بازفراوری استفاده میشود. در این عملیات، ابتدا پوسته فلزی میله های سوخت مصرف شده را جدا میسازند و سپس آنها را در داخل اسید نیتریک داغ حل میکنند

در نتیجه این عملیات، ?% پلوتونیوم ، ?% مواد زائد به شدت رادیو اکتیو و ??% اورانیوم بدست می آید که دوباره میتوان آنرا در راکتور به مصرف رساند

راکتورهای نظامی این کار را بطور بسیار موثرتری انجام میدهند. راکتور و تاسیسات باز فراوری مورد نیاز برای تولید پلوتونیوم را میتوان بطور پنهانی در داخل ساختمانهای معمولی جاسازی کرد. به همین دلیل، تولید پلوتونیوم به این طریق، برای هر کشوری که بخواهد بطور مخفیانه تسلیحات اتمی تولید کند گزینه جذابی خواهد بود

استفاده از پلوتونیوم به جای اورانیوم در ساخت بمب اتمی مزایای بسیاری دارد. تنها چهار کیلوگرم پلوتونیوم برای ساخت بمب اتمی با قدرت انفجار ?? کیلو تن کافی است. در عین حال با تاسیسات بازفراوری نسبتا کوچکی میتوان چیزی حدود ?? کیلوگرم پلوتونیوم در سال تولید کرد

کلاهک هسته ای شامل گوی پلوتونیومی است که اطراف آنرا پوسته ای موسوم به منعکس کننده نوترونی فرا گرفته است. این پوسته که معمولا از ترکیب بریلیوم و پلونیوم ساخته میشود، نوترونهای آزادی را که از فرایند شکافت هسته ای به بیرون میگریزند، به داخل این فرایند بازمی تاباند

بمب پلوتونیومی

1- منبع یا مولد نوترونی

2- هسته پلوتونیومی

3- پوسته منعکس کننده (بریلیوم)

4- ماده منفجره پرقدرت

5- چاشنی انفجاری

برای کشور یا گروه تروریستی که بخواهد بمب اتمی بسازد، تولید پلوتونیوم با کمک راکتورهای هسته ای غیر نظامی از تهیه اورانیوم غنی شده آسانتر خواهد بود. کارشناسان معتقدند که دانش و فناوری لازم برای طراحی و ساخت یک بمب پلوتونیومی ابتدائی، از دانش و فنآوری که حمله کنندگان با گاز اعصاب به شبکه متروی توکیو در سال ???? در اختیار داشتند پیشرفته تر نیست.

چنین بمب پلوتونیومی میتواند با قدرتی معادل ??? تن تی ان تی منفجر شود، یعنی ?? مرتبه قویتر از قدرتمندترین بمبگزاری تروریستی که تا کنون در جهان رخ داده است

هدف طراحان بمبهای اتمی ایجاد یک جرم فوق بحرانی ( از اورانیوم یا پلوتونیوم) است که بتواند طی یک واکنش زنجیره ای مداوم و کنترل نشده، مقادیر متنابهی انرژی حرارتی آزاد کند.

یکی از ساده ترین شیوه های ساخت بمب اتمی استفاده از طرحی موسوم به "تفنگی" است که در آن گلوله کوچکی از اورانیوم که از جرم بحرانی کمتر بوده به سمت جرم بزرگتری از اورانیوم شلیک میشود بگونه ای که در اثر برخورد این دو قطعه، جرم کلی فوق بحرانی شده و باعث آغاز واکنش زنجیره ای و انفجار هسته ای میشود.

کل این فرایند در کسر کوچکی از ثانیه رخ میدهد.

جهت تولید سوخت مورد نیاز بمب اتمی، هگزا فلوئورید اورانیوم غنی شده را ابتدا به اکسید اورانیوم و سپس به شمش فلزی اورانیوم تبدیل میکنند. انجام این کار از طریق فرایندهای شیمیائی و مهندسی نسبتا ساده ای امکان پذیر است

قدرت انفجار یک بمب اتمی معمولی حداکثر ?? کیلو تن است، اما با کمک روش خاصی که متکی بر مهار خصوصیات جوش یا گداز هسته ای است میتوان قدرت بمب را افزایش داد.

در فرایند گداز هسته ای ، هسته های ایزوتوپهای هیدروژن به یکدیگر جوش خورده و هسته اتم هلیوم را ایجاد میکنند. این فرایند هنگامی رخ میدهد که هسته های اتمهای هیدروژن در معرض گرما و فشار شدید قرار بگیرند. انفجار بمب اتمی گرما و فشار شدید مورد نیاز برای آغاز این فرایند را فراهم میکند.

طی فرایند گداز هسته ای نوترونهای بیشتری رها میشوند که با تغذیه واکنش زنجیره ای، انفجار شدیدتری را بدنبال می آورند. اینگونه بمبهای اتمی تقویت شده به بمبهای هیدروژنی یا بمبهای اتمی حرارتی موسومند


نظر()

  

یکی از تجهیزات مفید مورد نیاز در بخشهای پزشکی هسته ای تشخیصی دستگاه شاخص اندازه گیری جذب ید می باشد که بکمک تنها یک دتکتور سنتیلاسیون قادر به شمارش پرتوهای خارج شده از تیروئید بیماران مبتلا به بیماری است و می تواند در زمان خیلی کوتاه جذب ید بیمار را اندازه گیری و در تشخیص افتراقی بیماریهای تیروئید کمک بسیار نماید. از آنجائیکه بعضی مراکز بدین منظور گاه از دستگاههای دوربین گاما استفاده می کنند که مستلزم هزینه و وقت بیشتری است بکارگیری دستگاه ذکر شده به صرفه اقتصادی نیز هست.
بدین منظور طی پروژه ای در مرکز تحقیقات علوم و تکنولوژی در پزشکی، سعی شد با بررسی نمونه های مختلف این دستگاه و با بررسی دقیق کلیة اجزاء این سیستم ها و شناسایی کلیه پارامترهای مهم در این دستگاه که شامل قسمتهای مختلف مکانیکی، نرم افزاری و الکترونیکی می باشد، نمونه این دستگاهها را با هزینه کمتر در داخل کشور مونتاژ نمائیم.
با انتخاب آشکارساز مناسب از نوع آشکارساز یدید سدیم (
NaI(Tl بهمراه سیستم تحلیلگر بس کاناله با 2048 کانال و دقت بالا ( 11- بیتی)  و تهیه آن از منابع معتبر (لازم به ذکر است که تولید آشکارسازهــای هسته ای نیازمنـد تکنولوژی بالایی است و در حـال حاضر در داخل کشور ممکن نمی باشد) سعی شد علاوه بر طراحی و ساخت قسمتهای مکانیکی که خود از اهمیت زیادی برخوردار است با بهره گیری از نرم افزارهایی که توسط شرکت سازنده برای دستگاه تهیه شده است و بکمک برنامه نویسی تحت ویندوز 98 با برقراری ارتباط بین نرم افزار تحت ویندوز و برنامه های خود سیستم که از نوع MS-DOS می باشند بتوانیم کنترل سیستم آشکارساز را از محیط ویندوز به دست بگیریم و شمارشهای لازم را انجام داده و اطلاعات حاصل از شمارش پرتوهای خروجی بیمار را در محیط ویندوز گردآوری و ذخیره نمائیم و سپس کلیه پردازشها را انجام داده، نتایج را در فایل بیمار ذخیره یا توسط چاپگر، چاپ و در اختیار بیمار قرار دهیم.
بدین ترتیب علاوه بر صرفه جویی ارزی و کسب دانش فنی، زمینه مناسبی برای ایجاد چندین شغل فراهم و زمینه گسترش این نوع فعالیتها جهت ساخت سایر وسایل نیز فراهم گردید. بعلاوه، تستهای کلینیکی انجام شده نیز علاوه بر کمک به رفع نواقص و کاستیهای سیستم در کل نشان داد که سیستم از قابلیت بسیار خوب و قابل رقابتی برخوردار و قابل عرضه و رقابت با محصولات مشابه خارجی می باشد.


نوشته شده توسط امیر حکیمی در جمعه ?? بهمن ???? و ساعت 13:53
ایران و نیاز به برق هسته ای | برق هسته ای

ایران و نیاز به برق هسته ای

 

رشد اقتصاد جهانی?مهمترین محرک برای رشد تقاضای انرژی در جهان بوده است و از آنجا که کشورها برای رشد اقتصادی خود نیازمند انرژی هستند?همواره مقادیر بیشتری از آن را مطالبه می کند. در این میان اگر چه نفت در سال های گذشته به عنوان یکی از مهمترین منابع انرژی در جهان مطرح بوده است?اما محدودیت در منابع و فنا پذیری آن طی سال های آینده?دولت ها را به سوی استفاده از انرژی های نو رهنمون کرده است.

انرژی هسته ای در شمار یکی از این انرژیهای نو محسوب می شود و ایران بنابردلایل بسیار?وارد کارزار تأمین انرژی شده است تا سهم مناسبی از منافع حاصل از انواع فعالیت های هسته ای را به دست آورد?اما در این فرآیند پر فراز و نشیب?بر اثر جوسازی ایالات متحده در سطح جهان بر ضد ایران و طولانی شدن روند آن دستیابی کشورمان به فناوری هسته ای دغدغه امنیتی را برای کشورهای دیگر فراهم کرده است.به طوری که فضای حاکم بر این فرایندکاملاً سیاسی شده و از برخی نیازهای اساسی به آن غفلت شده است.صاحب نظران اقتصادی بر این باورند که این چنین محدودیت هایی نباید باعث شود تا ایران از دستیابی به فناوری های جدید دنیای امروز غافل بماند.مصرف برق کشور در دو سال گذشته به طور متوسط بیش از 7%در سال رشد کرده است. با توجه به برنامه های توسعه کشور?کلیه پیش بینی ها حکایت از آن دارد که این روند فزاینده همچنان ادامه خواهد داشت.از سوی دیگر?به دلیل وضعیت اقلیمی کشور و محدودیت های ظرفیت های برق-آبی?با وجود توسعه گسترده این منابع?سهم تولید برق از سدها و منابع آبی کشور ظرف 40 سال گذشته از بیش از 25%به کمتر از 4% کاهش یافته و تولید برق کشور بیش از پیش به نیروگاه های بخاری و گازی و یا سیکل ترکیبی وابسته شده است. این مساًله نیز بسیار با اهمیت است که به دلیل محدودیت منابع غنی ذغال سنگ در کشورمان?ذغال سنگ نیز سهمی در تولید برق ندارند و در آینده نیز نمی تواند سهم قابل توجهی در این زمینه داشته باشد?از این رو تولید انرژی برق در نیروگاه های کشوردر قیاس با متوسط جهانی نیز بیش از حد به سوختهای هیدرو کربوری وابسته است.همچنین باید توجه داشت فرایند تبدیل انرژی اولیه هیدروکربوری به برق? راندمان نسبتاً پایین و اثار منفی زیست محیطی دارد?بنابراین برای تأمین نیاز آینده کشور به نیروی برق?روی آوردن به تولید برق هسته ای اجتناب ناپذیربه نظر می رسد و به همین دلیل حتی در دوران رژیم گذشته?تولید برق هسته ای در برنامه های بلند مدت تأمین برق?انرژی مورد نیاز کشور لحاظ شده است و متوقف کردن برنامه های یاد شده به معنای آسیب به فرایند رشد و توسعه اقتصادی کشور خواهد بود.

 

انرژی های فنا پذیر و آلوده ساز

اگر جامعه جهانی و بویژه دولت صنعتی غرب در ادعاهای خود در مباحث مربوط به جهانی شدن و الزام های آن صداقت دارند?باید این صداقت را در همه امور نشان دهد. در زمینه منابع انرژی فسیلی?با توجه به دو ویژگی مهم این منابع? نگرش و برنامهریزی یکپارچه اهمیت فراوانی دارد.این دو ویژگی عبارتند از:فنا ناپذیر بودن و آلوده ساز بودن این منابع اگر نگاه واقعاً جهانی باشد?منابع محدود فسیلی متعلق به کل جامعه بشری است و پیامدهای زیست محیطی ناشی از مصرف بی روی? آن نیز گریبان کل جامعه بشری را می گیرد. بنابراین یک برنامه ریزی منطقی با نگرش های محدود ملی لازم است که در  انتخاب ترکیب بهینه به استفاده از حامل های مختلف انرژی و منابع کل جامع? بشری توجه شود.در این چارچوب آیا منطقی خواهدبود که مثلاً در یک کشور?بعضی از حامل های انرژی به صورت غیر اقتصادی استفاده شوند و این کشور به هر دلیل یا بهانه ای ? از بهینه کردن ترکیب انرژی خود بازداشته شود و یا در جایی که بهینه ملی یا بهین? جهانی در تعارض قرار می گیرند?در فرایند جهانی شدن کدام را باید انتخاب کرد؟کشورهای صنعتی بعد از ده?70 تمام تلاش خود را برای به حداقل رساندن سهم نفت و گاز در سبد انرژی مصرفی خود داشته اند?اما سهم این منابع هرگز به صفر نرسیده است و نخواهد رسید و بنابراین باید از منابع هیدرو کربوری در سطح جامع? بین المللی به صورت بهینه استفاده کرد.استفاد? غیر بهینه یک کشور موجب محرومیت کل جامعه بشری خواهد شد?بنابراین منطق جهانی ایجاب می کند که جامعه بشری در مقابل وادار کردن یک کشور به استفاد? غیر بهینه از منابع انرژی خود موضع گیری کند.

با توجه به آنچه گفته شد?نیاز ایران به برق هسته ای آشکارتر می شود و برای دستیابی ایران به این فناوری باید به هر گونه همکاری ایران با اتحادیه اروپایی در زمین? انرژی اتمی در چارچوب همکاری گسترده در زمین? کل مقوله انرژی ? توجه شود .

 

دامن? کاربرد فناوری هسته ای

یکی از حوزه های کاربرد انرژی هسته ای صنایع غذایی است. پرتو دهی مواد غذایی فرایندی است که طی آن اشعه یونیزان برای تازه نگهداشتن غذا و کشتن میکروب ها مورد استفاده قرار می گیرد. برخی پرتو دهی مواد غذایی را تحت عنوان روش پاستوریزاسیون سرد نامیده اند.زیرا در این روش به جای انرژی گرمایی?انرژی اشعه برای از بین بردن میکروارگانیزم های بیماری زا به کار می رود. لیستر?پاستور و دیگران ارتباط بین فساد مواد غذایی را با وسایل و ظروف آلوده که به شیوع بیماری منجر می شود?مطرح کردند.پس از آن نه تنها تهی? غذا در زمان و مکان مورد نیاز بلکه جلوگیری از صدمه زدن به انسان نیز از اهداف مورد نظر بود. به کار گیری فرایند قرار دادن مواد غذایی در معرض انرژی اشعه تازگی ندارد. برای مثال قرن ها از انرژی خورشید برای حفظ گوشت?میوه و سبزی و ماهی استفاده شده است. اخیراً تشعشع مایکروویو و مادون قرمز برای گرم کردن غذا به کار می روند. فناوری پرتودهی تاریخچ? طولانی در مورد محصولات غیر غذایی دارد. این فناوری چند دهه برای اتصال متقاطع پلیمرهای مورد استفاده در لاستیک های اتومبیل ها?عایق دار کردن سیم ها?جوهرهای چاپ و محافظ های بسته بندی موادغذایی بکار رفته است؛همچنین به منظور استریل کردن حدوداً 50%همه مواد عرضه شده در وسایل پزشکی مانند بانداژها?نخ بخیه و پارچه های جراحی استفاده می شود و در حال حاضر محصولات مورد مصرفی همچون مواد آرایشی?پستانک بچه?حلقه های لاستیکی مخصوص گاز گرفتن کودک و ... همگی با پرتو دهی استریل می شوند. از دیگر حوزه های کاربرد انرژی هسته ای?صنعت است. رادیو ایزوتوپ ها? مواد رادیو اکتیوی که طبیعی اند یا بطور مصنوعی ساخته می شوند?کاربرد وسیعی در ابزار?اندازه گیری ها و دستگاه های تصویر برداری دارند. محور همه این کاربرد ها رادیو ایزوتوپ است. گر چه اشعه دیده نمی شود?اما براحتی می تواند با ابزار نوری صحیح تشخیص داده شود. علوم فضایی نیز از این تکنولوژی بی بهره نمانده است فناوری فوق نقش بسیار مهمی در اکتشافات فضایی دارد. با مطالعه علوم هستهای و بکارگیری این دانش می توانیم ماهوار ها?ایستگاه فضایی بین المللی و مسافران فضا را تقویت و حفاظت کنیم.از مهمترین کاربردهای انرژی هسته ای?بکارگیری آن در علم پزشکی است. پزشکی هسته ای و رادیولوژی همگی تکنیک های پزشکی هستند که مستلزم استفاده از پرتودهی یا رادیواکتیویته برای تشخیص?درمان و جلوگیری از بیماری اند. در حالیکه رادیولوژی تقریباً نزدیک به یک قرض است مورد استفاده قرار گرفته?پزشکی هسته ای حدوداً 50 سال پیش آغاز شد؛وبالاخره یکی از حوزه های مهم استفاده از انرژی هسته ای تولید الکتریسیته است. انرژی از منابع طبیعی از جمله ذغال?گاز?نفت?آب?باد?خورشید و در نهایت از منابع هسته ای ایجاد می شود. بخشی از این انرژی برای تولید برق استفاده می شود (دیگر بخش ها برای مثال شامل حمل ونقل می باشد) کارخانجات تولید برق گرما یا حرکت این منابع طبیعی را برای تولید برق بکار می برند? اما یکی از پاکیزه ترین روش ها از لحاظ محیطی برای تولید برق?استفاده از انرژی هسته ای است؛ با این وصف جایگاه انرژی اتمی با جنبه های وسیع و سودمند کاربردی مشخص بوده و اهمیتی که در بهبود کیفیت زندگی بشر دارد و نقش آن در پیشرفت علمی?صنعتی و اقتصادی جوامع روشن است.


اولین دیدگاه را شما بگذارید

  

کارخانه فرآوری اورانیوم اصفهان یکی ازتاسیسات مهم ومحوری معاونت تولید سوخت سازمان انرژی اتمی درزمینی بالغ بر 60 هکتار شامل 60 واحد تولیدی ساختمانهای فرآیندی و غیر فرآیندی تاسیس شده که کلیه تجهیزات آن که حدود 15000 دستگاه است به دست متخصصان داخلی ساخته شده است.

کلیه امورطراحی ، نصب واجرای بخشهای مختلف کارخانه UCF به دست متخصصان توانمند ایرانی انجام شده است واین توان و استعداد موجب شده است که علیرغم اینکه تنها 70 درصد کار اجرایی سایت انجام شده است، بیش از 40 تن ترکیبات گوناگون اورانیوم در این مرکز تولید شود.

این سایت در مرکزیت چرخه سوخت هسته ای کشور قرار گرفته و پلی میان صنایع بالا دست و پایین دست هسته ای ایران است که با بهره گیری از دانش فنی انحصاری و با تکیه بر توانمندیهای بیش از یکهزار متخصص ایرانی در کلیه مراحل طراحی ، ساخت و اجرا ایجاد شده است.

تبدیل کیک زرد U3O8 به ترکیبات دیگر اورانیوم یعنی UO2 و UF4 وUF6 مهمترین فعالیتی است که در این کارخانه انجام می شود و غنی سازی اورانیوم جزو وظایف کارخانه UCF نیست.

درسال 1377 مقدمات انجام کار بدست جوانان ایرانی فراهم شد و ازسال 79 رسما جمعی از مهندسین جوان و چهره های عالم ایرانی با تکیه به دانش و فناوری داخلی کار را در دست گرفتند واکنون طی چهار سال با انجام هفتاد درصد پروژه توانستند در همه حوزه هایی که در این سایت و مجموعه عظیم هسته ای که باید به حق یکی از افتخارات ملی نام نهاد دست یابند .

مجریان این پروژه سعی کرده اند زبده ترین و مستعدترین فارغ التحصیلان دانشگاهها را جذب کنند و در کنار آنها از تکنیسین های توانمند نیز بهره بگیرند و درراستای سیاستهای سازمان انرژی اتمی ومعاونت تولید سوخت هسته ای گام بردارند .

تولید گاز فلوئورازالکترولیز HF نیز به عنوان یک محصول استراتژیک و یک گاز قوی دراین کارخانه صورت می گیرد. این گازبه عنوان یک ماده اصلی در صنایع شیمیایی کشورکاربرد دارد.

در این ماه ها با توجه به اینکه در خط تولید UF6 تعلیق داشتیم برخی امور اجرایی و ساختمانی انجام شده وبرنامه ریزی به گونه ای بوده است که کلیه واحدهای اجرایی و جنبی کارخانه که تاخیر در راه اندازی داشتند به بهره برداری برسد .

گزارش خبرنگار مهر می افزاید طبق توافق ایران و اروپا قرار بود فعالیت این کارخانه به طور موقت برای مدتی محدود تا به نتیجه رسیدن مذاکرات هسته ای ایران و اروپا به حالت تعلیق درآید ؛ درطول مدت تعلیق به دلیل اینکه محصول AUC مدت زیادی نمی تواند نگهداری شود با آژانس توافق شده بود فقط تا مرحله تبدیل به UF4 که پایدارتراست ادامه یابد.

کار ساخت کارخانه UCF اصفهان در سال 72-71  برای اجرای یکی ازپروژه ها با انعقاد قراردادی با شرکت چینی آغاز شد . درطول مدت 5 سال چینی ها تنها 10 درصد کار را انجام دادند و بعد تحت فشار قدرتهای بزرگ سیاسی سر باز زدند و گمان نمی کردند این کار با تکیه به دانش و اندیشه مهندسان ایرانی قابل انجام باشد و بعد از قطع یک جانبه قرارداد از سوی چین، مسوولین پروژه با برخی کشورهایی که این دانش را در اختیار داشتند وارد گفتگو و رایزنی شدند اما همه آنها پاسخ منفی دادند.

امروز با استفاده از منابع ارزشمند اورانیوم در کشور؛ کیک زرد را تولید و پس از فرآوری ترکیبات اورانیوم مانند UF6 از آن در اختیار مجموعه دیگر هسته ای کشورقرار می گیرد تا در فرایند غنی سازی با 5/3 تا 5 درصد برای مصارف مختلف دانش هسته ای از قبیل کشاورزی ، پزشکی و تولید انرژی استفاده شود و یا در مراحل نهایی برای غنی سازی پیگیری شود.

مجریان طرح کارخانه UCF اصفهان ، برنامه های آینده مرکز را بهبود و افزایش کیفیت و بالا بردن روشهای تحقیق و توسعه و بکار گیری نتایج این تحقیقات در محصولات تولیدی اعلام کرده و می افزایند که محصولات اتمی مواد ساده ای نیست که یک روز یا یک هفته ای تولید شود بلکه مسیری طولانی دارد که خوشبختانه با توان متخصصان داخلی این مرکز این مسیر طولانی در زمان کوتاهی طی می شود.

بر اساس بررسی های صورت گرفته و همچنین تایید کلیه فاکتورهای ایمنی از سوی مراجع معتبر بین المللی ، در کارخانه UCF اصفهان کلیه ملاحظات زیست محیطی رعایت شده است.

 


اولین دیدگاه را شما بگذارید

  

انرژی هسته ای کاربرداری زیاد در پزشکی در علوم و صنعت و کشاورزی و... دارد. لازم به ذکر است انرژی هسته ای به تمامی انرژی های دیگر قابل تبدیل است ولی هیچ انرژی به انرژی هسته ای تبدیل نمی شود .موارد زیادی از کاربردهای انرژی هسته ای در زیر آورده می شود .
 

نیروگاه هسته ای:
نیروگاه هسته ای (Nuclear Power Station) یک نیروگاه الکتریکی که از انرژی تولیدی شکست هسته اتم اورانیوم یا پلوتونیم استفاده می کند. اولین جایگاه از این نوع در 27 ژوئن سال 1958 در شوروی سابق ساخته شد. که قدرت آن 5000 کیلو وات است. چون شکست سوخت هسته ای اساساً گرما تولید می کند از گرمای تولید شده رآکتور های هسته ای برای تولید بخار استفاده می شود از بخار تولید شده برای به حرکت در آوردن توربین ها و ژنراتور ها که نهایتاً برای تولید برق استفاده می شود .
 

بمب های هسته ای:
این نوع بمب ها تا حالا قویترین بمبهای و مخربترین های جهان محسوب می شود. دارندگان این نوع بمبهاجزو قدرت های هسته ای جهان محسوب می شود .
 

پیل برق هسته ای Nuelear Electric battery:
پیل هسته ای یا اتمی دستگاه تبدیل کننده انرژی اتمی به جریان برق مستقیم است ساده ترین پیل ها شامل دو صفحه است. یک پخش کننده بتای خالص مثل استرنیوم 90 و یک هادی مثل سیلسیوم.
جریان الکترون های سریعی که بوسیله استرنیوم منتشر می شود ازمیان نیم هادی عبور کرده و در حین عبور تعداد زیادی الکترون ها اضافی را از نیم هادی جدا می‌کند که در هر حال صدها هزار مرتبه زیادتر از جریان الکتریکی حاصل از ایزوتوپ رادیواکتیو استرنیوم 90 می باشد .
 

کاربردهای پزشکی: کاربردهای انرژی هسته‌ای
در پزشکی تشعشعات هسته ای کاربردهای زیادی دارند که اهم آنها عبارتند از:
    • رادیو گرافی
    • گامااسکن
    • استرلیزه کردن هسته ای و میکروب زدایی وسایل پزشکی با پرتو های هسته ای
    • رادیو بیولوژی

کاربرد انرژی هسته ای در بخش دامپزشکی و دامپروری :
تکنیکهای هسته ای در حوزه دامپزشکی موارد مصرفی چون تشخیص و درمان بیماریهای دامی ، تولید مثل دام ، اصلاح نژاد و دام ، تغذیه ، بهداشت و ایمن سازی محصولات دامی و خوراک دام دارد.
 

کاربرد انرژی هسته ای در دسترسی به منابع آب :
تکنیکهای هسته ای برای شناسایی حوزه های آب زیر زمینی هدایت آبهای سطحی و زیر زمینی ، کشف و کنترل نشت و ایمنی سدها مورد استفاده قرار میگیرد. در شیرین کردن آبهای شور نیز انرژی هستهای کاربرد دارد.
 

کاربردهای کشاورزی:
تشعشعات هسته ای کاربرد های زیادی در کشاورزی دارد که مهم ترین آنها عبارتست از:
• موتاسیون هسته ای ژن ها در کشاورزی
• کنترل حشرات با تشعشعات هسته ای
• جلوگیری از جوانه زدن سیب زمینی با اشعه گاما
• انبار کردن میوه ها
• دیرینه شناسی )باستان شناسی) و صخره شناسی )زمین شناسی) که عمر یابی صخره ها با C14 در باستان شناسی خیلی مشهور است.
 

کاربردهای صنعتی:
در صنعت کاربردها ی زیادی دارد از جمله مهمترین آنها عبارتند از:
• نشت یابی با اشعه
• دبی سنجی پرتویی(سنجش شدت تشعشعات ، نور و فیزیک امواج)
• سنجش پرتویی میزان سائیدگی قطعات در حین کار
• سنجش پرتویی میزان خوردگی قطعات
• چگالی سنج موادمعدنی با اشعه
• کشف عناصر نایاب در معادن
 

تکنیکهای هسته ای بر کشف مینهای ضد نفر نیز کاربرد دارد. بنابرین ، دانش هسته ای با این قدرت و وسعتی که دارد، هر روز بر دامنه استفاده از فناوری هسته ای و بویژه انرژی هسته ای افزوده می شود. کاربرد انرژی در بخشهای مختلف به گونه ای است که اگر کشوری فناوری هسته ای را نهادینه نماید، در بسیاری از حوزه‌های علمی و صنعتی ، ارتقای پیدا می کند و مسیر توسعه را با سرعت طی می نماید.

انرژی هسته ای در پزشکی هسته ای و امور بهداشتی:
در کشورهای پیشرفته صنعتی ، از انرژی هسته ای به صورت گسترده در پزشکی استفاده می گردد. با توجه به شیوع برخی از بیماریها از جمله سرطان ، ضرورت تقویت طب هسته ای در کشورهای در حال توسعه ، هر روز بیشتر می شود. موارد زیر از مصادیق تکنیکهای هسته ای در علم پزشکی است:
تهیه و تولید کیتهای رادیو دارویی جهت مراکز پزشکی هسته ای
تهیه و تولید رادیو دارویی جهت تشخیص بیماری تیرویید و درمان آنها
تهیه و تولید کیتهای هورمونی
تشخیص و درمان سرطان پروستات
تشخیص سرطان کولون ، روده کوچک و برخی سرطانهای سینه
تشخیص تومورهای سرطانی و بررسی تومورهای مغزی ، سینه و ناراحتی وریدی
تصویر برداری بیماریهای قلبی ، تشخیص عفونتها و التهاب مفصلی ، آمبولی و لختههای وریدی
موارد دیگری چون تشخیص کم خونی ، کنترل رادیو داروهای خوراکی و تزریقی و ...

کاربرد انرژی هسته ای در تولید برق : انرژی هسته ای
یکی از مهم ترین موارد استفاده صلح آمیز از انرژی هسته ای ، تولید برق از طریق نیروگاههای اتمی است. با توم به پایان پذیر بودن منابع فسیلی و روند رو به رشد توسعه اجتماعی و اقتصادی ، استفاده از انرژی هسته ای برای تولید برق را امری ضروری و لازم می دانند و ساخت چند نیروگاه اتمی را دنبال مینماید.
ایران هر ساله حدودا به هفت هزار مگاوات برق در سال نیاز دارد. نیروگاه اتمی بوشهر 1000 مگاوات برق را در صورت راه اندازی تامین می نماید. و احداث نیروگاههای دیگر برای رفع این نیازی ضروری است. برای تولید میزان برق حدود 190 میلیون بشکه نفت خام مصرف می شود. که در صورت تامین از طریق انرژی هسته ای سالیانه 5 میلیارد دلار صرفه جویی خواهد شد.

برتری انرژی هسته ای بر سایر انرژیها:
علاوه بر صرفه اقتصادی دلایل زیر استفاده از انرژی هسته ای را ضروری مینماید. منابع فسیلی محدود بوده و متعلق به نسلهای آتی میباشد. استفاده از نفت خام در صنایع تبدیل پتروشیمی ارزش بیشتری دارد. تولید برق از طریق نیروگاه اتمی ، آلودگی نیروگاههای کنونی را ندارد. تولید هفت هزار مگاوات با مصرف 190 میلیون شبکه نفت خام ، هزارتن دیاکسید کربن ، 150 تن ذرات معلق در هوا ، 130 تن گوگرد و 50 تن اکسید نیتروژن را در محیط زیست پراکنده می کند، در حالی که نیروگاه اتمی چنین آلودگی را ندارد.


اولین دیدگاه را شما بگذارید

  

اطلاعات اولیه

پلوتونیوم ، یک عنصر شیمیایی رادیواکتیو و فلزی است که نماد آن Pu و عدد اتمی آن 94 می‌باشد. وزن اتمی این عنصر 244.06 بوده ، چگالی آن 19.800 kg/m3 می‌باشد. پلوتونیوم در سال 1940 توسط GlennT.Seaborg ، Edwin McMillan ، Kennedy و Wahl از طریق بمباران دوترونی اورانیوم در سیکلوترون (شتاب دهنده ذرات مدور) Berkeley Radiation Laboratory دانشگاه کالیفرنیا برکلی کشف شد. اما این کشف تا مدتها سری باقی ماند. این عنصر با توجه به کشف سیاره پلوتو که درست بعد از نپتون کشف شد، پلوتونیوم نام گرفت؛ (پلوتون در منظومه شمسی بعد از نپتون قرار دارد).

ایزوتوپها

مهمترین ایزوتوپ پلوتونیوم Pu239 بوده که نیم عمر آن 24200 سال می‌باشد و بدلیل نیمه عمر کوتاه آن ، رد بسیار ناچیزی از پولوتونیم به‌صورت طبیعی در معادن
یافت می‌شود. پلوتونیوم 239 ، در رآکتورهای هسته‌ای از اورانیوم 238 و در مقیاسهای بالا تولید می‌شود.

ایزوتوپ پلوتونیوم 238 ساطع کننده اشعه آلفا می‌باشد که نیمه عمرش 87 سال است. این خصوصیات ، آن را برای استفاده در تولید نیروی برق برای دستگاه‌هایی که می‌بایست بدون نگهداری مستقیم در مقیاسهای زمانی حدودا برابر عمر انسان کار کنند، مناسب می‌کند؛ بنابراین در RTG هائی مانند آنهائی که نیروی کاوشگرهای فضایی Galileo و Cassini را تامین می‌کنند، کاربرد دارد.

همچنین پلوتونیم چهار ظرفیت یونی را در محلولهای آبی از خود نشان می‌دهد
یون +PuO در محلولهای آبی پایدار نیست و تناسبی با 4+Pu و 2+PuO ندارد. 4+Pu می‌تواند +PuO را به 2+PuO تبدیل کرده ، خودش به 3+PuO تبدیل شود و یک +PuO و 3+PuO آزاد کند.

پلوتونیوم ترکیبات دوتایی PuO و PuO2 را با اکسیژن شکل می‌دهد و با هیدراتهای PuF3,PuF4,PuCl3,PuBr3,PuI3 و کربن ، نیتروژن وسیلیکون در ترکیبات متغیر مداخله می‌کند. Puc, PuN, PuSi2 و اکسی هالیدها نیز شناخته شده می‌باشند: PuOCL , PuObr , PuOI.

کاربردها


img/daneshnameh_up/0/0d/125px_Plutonium_button.jpg

پلوتونیوم یکی از مواد مهم شکافت هسته‌ای در سلاحهای هسته‌ای پیشرفته می‌باشد. باید احتیاط لازم جهت جلوگیری از جمع شدن مقداری از پلوتونیوم که به جرم بحرانی نزدیک می‌شود، به عمل آورد، چرا که این مقدار از پلوتونیوم خود به خود واکنشهای شیمیایی تولید می‌کند.

بدون توجه به محدود نشدن پلوتونیوم توسط فشار خارجی که برای یک سلاح هسته‌ای لازم است، پلوتونیوم می‌تواند خودش را گرم کرده ، هر چیزی را که پیرامون آن را محدود می‌کند بشکند، جلوگیری شود. شکل ظاهری پلوتونیوم هم در این امر موثر است، بنابراین ، باید از اشکال فشرده مانند کره جلوگیری کرد.

همچنین پلوتونیوم مخصوصا نوع بسیار خالص آن ، آتش‌زا بدوه ، به‌صورت شیمیایی با اکسیژن و آب واکنش می‌دهد که می‌تواند باعث انباشتگی هیدرید پلوتونیوم و یک ترکیب Pyrophoric شود که ماده ای است که در دمای اطاق در هوا می‌سوزد. حجم پلوتونیوم به هنگام ترکیب شدن با اکسیژن بسیار افزایش می‌یابد و می‌تواند ظرف خود را بشکند. بنابر این احتیاطهای لازم برای حمل پلوتونیوم در هر شکل آن ، باید انجام شود و عموما یک اتمسفر خشک و خنثی نیاز می‌باشد.

علاوه بر اینها ، خطرات رادیواکتیوی نیز وجود دارد. خاک اکسید منیزیم موثرترین ماده برای فرو نشاندن آتش پلوتونیوم می‌باشد. آن ماده ، شعله را مانند یک کاهنده دما ( Hit Sink )سرد می‌کند و در عین حال از رسیدن اکسیژن به آن جلوگیری می‌کند. آب نیز در این مورد موثر است. در سال 1962 در Rocky Flats Plant در نزدیکی Boulder, Colorado یک آتش‌سوزی بزرگ پلوتونیومی رخ داد.

پلوتونیوم همچنین در ساخت سلاحهای رادیولوژیکی و ساخت زهرها ( نه الزاما مهلک ) کاربرد دارد. توده‌های انباشته شده پلوتونیوم توسط اتحاد جماهیر شوروی قدیم و ایالات متحده آمریکا بوجود می‌آمد. از پایان جنگ سرد ، تمرکز بر نگرانی از گسترش تکنولوژی هسته‌ای بوجود آمد. در سال 2002 دپارتمان انرژی ایالات متحده 34 تن از مواد پلوتونیوم را که برای ساخت سلاحهای هسته‌ای استفاده می‌شد، از دپارتمان دفاع ایالات متحده گرفت و از اوایل سال 2003 تصمیم گرفت برای خلاصی از این اورانیومها ، به تبدیل چندین نیروگاه هسته‌ای در آمریکا ، از سوخت اورانیوم غنی شده به سوخت MOX اقدام کند.


تصویر
پلوتونیوم

خطرات

گاهی اوقات از پلوتونیوم با عنوان سمی‌ترین ماده شناخته شده بر انسان نام برده می‌شود و این در حالی است که یک توافق کلی در میان کارشناسان مبنی بر نادرست بودن این مطلب وجود دارد. تا سال 2003 تنها یک مورد مرگ انسان به‌علت مجاورت و ارتباط با پلوتونیوم وجود داشته است. رادیومی که به‌صورت طبیعی بوجود می‌آید، حدودا 200 برابر سمی‌تر از پلوتونیوم است و برخی از Toxinهای آلی مانند سم بوتولین ، میلیاردها برابر سمی‌تر از پلوتونیوم می‌باشند.

به هر حال ،حوادث بحرانی نیز وجود داشته است. حمل بی ملاحظه 6.2 kg پلوتونیوم کروی در Los Alamos در 21 آگوست 1945 ، باعث انتشار دوز مرگبار تشعشع گردید. "Harry Daghlian" دوزی در حدود 510 rem دریافت کرد؛ او 4 هفته بعد درگذشت. مرگ دیگری در سال 1958 در واحد غنی‌سازی اورانیوم Los Alamos روی داد. پلوتونیوم در یک مخزن مخلوط‌کن جمع شده بود. یک بار جدید هم به آن منتقل شد و در نتیجه 8 کیلوگرم پلوتونیوم در مرکز مخزن جمع شد. یک کارگر در معرض تشعشع قرار گرفت و در کمتر از دو روز در گذشت.

حالتهای سمی پلوتونیوم از نظر شیمیایی و رادیو لوژیکی ، باید از خطرات پلوتونیوم متمایز شود. بسیاری از جنبشهای ضد هسته‌ای و در ادامه جنبشهای سیاست سبز از پلوتونیوم به‌عنوان خطرناک‌ترین ماده شناخته شده برای بشریت یاد کرده‌اند و تنها دلیلشان ، نقش مهلک آن در تولید سلاحهای هسته‌ای می‌باشد.

احتمالا اختلاف این دو دیدگاه است که باعث گزافه‌گویی‌های احساسی در خصوص سمی بودن پلوتونیوم می‌شود. در سال 1989 نوشته ای از "Bernard L. Cohen" اینگونه بیان می کند که:

«« خطرات پلوتونیوم خیلی آشکارتر و راحت‌تر از خطرات ناشی از مواد افزودنی به غذاها و همچنین حشره کشها فهمیده می‌شوند و در مقایسه تنها یک مرگ در هر 300 سال می‌تواند کم‌مایه بودن این نظر را اثبات کند. علی‌رغم حقایق شناخته شده بر جامعه علمی افسانه سمی بودن پلوتونیوم همچنان ادامه دارد.»»

بنابراین هیچ گونه شک و تریدی وجود ندارد که پلوتونیوم در صورت استفاده نادرست می‌تواند بسیار خطرناک باشد. پرتوی آلفا که پلوتونیوم از خود ساطع میکند نمی‌تواند به پوست نفوذ کند، اما می‌تواند به اندامهای داخلی در صورت تنفس و یا خوردن پلوتونیوم آسیب برساند. ذرات بسیار کوچک پلوتونیم در صورت تنفس و رسیدن به ریه‌ها می‌تواند باعث بوجود آمدن سرطان ریه شود. مواد دیگر از جمله ricin ، سم botulinum و سم tetanum در دوزهائی کمتر از یک میلی‌گرم ، می‌توانند کشنده باشند، بنابراین پلوتونیوم از این نظر غیر عادی نیست.

مقادیر قابل توجه بیشتر آن ، در صورت بلع یا تنفس ، می‌تواند باعث بوجود آمدن مسمومیت رادیویی حاد و مرگ شخص شود. با این وجود ، تاکنون هیچ مورد مرگ به‌علت خوردن و یا تنفس پلوتونیوم دیده نشده و بسیاری از مردم مقدار قابل توجهی پلوتونیوم در بدن خود دارند.

خصوصیات

این فلز ظاهری نقره‌ای رنگ دارد و هنگامی که اکسید می‌شود، رنگش تا حدی به زرد تیره می‌گراید. اگر مقدار زیادی از پلوتونیوم در جایی جمع شود، به قدری گرم می‌شود که نمی‌توان آن را لمس کرد و دلیل آن نیز ساطع کردن انرژی آلفا می‌باشد. مقادیر بیشتر گرمای لازم را برای جوشاندن آب بوجود می‌آورد. این فلز به‌سرعت در اسید هیدرویدیک یا اسید پرکلریک غلیظ ، حل می‌شود. این فلز شش حالت آلوتروپی Allotropic با ساختارهای بلورین گوناگون از خود نشان می‌دهد که چگالی آنها از 16.00 تا 19.86 تغییر می‌کند.

اولین دیدگاه را شما بگذارید

  

مقدمه

سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ 235U به مقدار 0.7 درصد و 238U ‏به مقدار 3.99 درصد تشکیل شده است. سنگ معدن را ابتدا در اسید حل کرده و ‏بعد از تخلیص فلز ، اورانیوم را بصورت ترکیب با اتم فلوئور (9F ) و بصورت مولکول ‏اورانیوم هگزا فلوراید تبدیل می‌کنند که به حالت گازی است. سرعت متوسط ‏مولکولهای گازی با جرم مولکولی گاز نسبت عکس دارد.

غنی سازی با دستگاه سانتریفیوژ

سانتریفیوژ دستگاهی است که برای جدا سازی مواد از یکدیگر بر اساس وزن آنها استفاده می‌شود. این دستگاه مواد را با سرعت زیاد حول یک محور به گردش در می‌آورد و مواد متناسب با وزنی که دارند از محور فاصله می‌گیرند. در واقع در این روش برای جدا سازی مواد از یکدیگر از شتاب ناشی از نیروی گریز از مرکز استفاده می‌گردد، کاربرد عمومی این دستگاه برای جداسازی مایع از مایع و یا مایع از جامد است. سانتریفیوژهایی که برای غنی سازی اورانیوم استفاده می‌شود حالت خاصی دارند که برای گاز تهیه شده‌اند که به آنها Hyper-Centrifuge گفته می‌شود. پیش از آنکه دانشمندان از این روش برای غنی سازی اورانیوم استفاده کنند از تکنولوژی خاصی بنام Gaseous Diffusion به معنی پخش و توزیع گازی استفاده می‌کردند.



 

غنی سازی با دیفوزیون گازی Gaseous Diffusion

گراهان در سال 1864 پدیده‌ای را کشف کرد که در آن سرعت متوسط مولکولهای ‏گاز با معکوس جرم مولکولی گاز متناسب بود. از این پدیده که به نام دیفوزیون ‏گازی مشهور است برای غنی سازی اورانیوم استفاده می‌کنند. در عمل اورانیوم ‏هگزا فلوراید طبیعی گازی شکل را از ستونهایی که جدار آنها از اجسام متخلخل ‏‏(خلل و فرج دار) درست شده است عبور می‌دهند. سوراخهای موجود در جسم ‏متخلخل باید قدری بیشتر از شعاع اتمی یعنی در حدود 2.5 آنگسترم (7-‏25x10 سانتیمتر) باشد.

ضریب جداسازی متناسب با اختلاف جرم مولکولها است. روش غنی سازی ‏اورانیوم تقریبا مطابق همین اصولی است که در اینجا گفته شد. با وجود این ‏می‌توان به خوبی حدس زد که پرخرج ترین مرحله تهیه سوخت اتمی همین ‏مرحله غنی سازی ایزوتوپها است، زیرا از هر هزاران کیلو سنگ معدن اورانیوم ‏‏140 کیلوگرم اورانیوم طبیعی بدست می‌آید که فقط یک کیلوگرم 235U ‏خالص در آن وجود دارد. Gaseous Diffusion از جمله تکنولوژیهایی بود که ایالات متحده طی جنگ جهانی دوم در پروژه‌ای بنام منهتن (Manhattan) برای ساخت بمب هسته‌ای ، با کمک انگلیس و کانادا به آن دست پیدا کرد.

در این روش با تکرار استفاده از این صفحات فیلتر مانند ، بصورت آبشاری (Cascade) ، میزان 235U را به مقدار دلخواه بالا می‌بردند. این روش اولین راهکارهای صنعتی برای غنی سازی اورانیوم بود که کابرد عملی پیدا کرد. نمونه‌ای از سانتریفیوژهای گازی آبشاری که برای غنی سازی اورانیوم از آنها استفاده می‌شود. Hyper-Centrifuge اما در روش استفاده از سانتریفیوژ برای غنی سازی اورانیوم ، تعداد بسیار زیادی از این دستگاهها بصورت سری و موازی بکار می‌برند تا با کمک آن بتوانند غلظت 235U را افزایش دهند.



 




گاز هگزافلوراید اورانیوم (UF6) در داخل سیلندرهای سانتریفیوژ تزریق می‌شود و با سرعت زیاد به گردش در آورده می‌گردد. گردش سریع سیلندر ، نیروی گریز از مرکز بسیار قوی تولید می‌کند و طی آن مولکولهای سنگینتر (آنهایی که شامل ایزوتوپ 238U هستند) از مرکز محور گردش دورتر می‌گردند و برعکس آنها که مولکولهای سبکتری دارند (حاوی ایزوتوپ 235U ) بیشتر حول محور سانتریفیوژ قرار می‌گیرند.

در این هنگام با استفاده از روشهای خاص گازی که حول محور جمع شده است جمع آوری شده به مرحله دیگر یعنی دستگاه سانتریفیوژ بعدی هدایت می‌گردد. میزان گاز هگزافلوراید اورانیوم شامل 235U که در این روش از یک واحد جداسازی بدست می‌آید به مراتب بیشتر از مقداری است که در روش قبلی (Gaseous Diffusion) بدست می‌آید، به همین علت است که امروزه در بیشتر نقاط جهان برای غنی سازی اورانیوم از این روش استفاده می‌کنند.

بزرگترین دستگاههای آبشاری سانتریفیوژ در کشورهایی مانند فرانسه ، آلمان ، انگلستان و چین در حال غنی سازی اورانیوم هستد. این کشورها علاوه بر مصرف داخلی به صادرات اورانیوم غنی شده نیز می‌پردازند. کشور ژاپن هم دارای دستگاههای بزرگ سانتریفیوژ است، اما تنها برای مصرف داخلی اورانیوم غنی شده تولید می‌کند.

غنی سازی اورانیم از طریق میدان مغناطیسی

یکی از روشهای غنی سازی اورانیوم استفاده از میدان مغناطیسی بسیار قوی می‌باشد. در این روش ابتدا اورانیوم هگزا فلوئورید را حرارت می‌دهند تا تبخیر شود. از طریق تبخیر ، اتمهای اورانیوم و فلوئورید از هم تفکیک می‌شوند. در این حالت ، اتمهای اورانیوم را به میدان مغناطیسی بسیار قوی هدایت می‌کنند. میدان مغناطیسی بر هسته‌های باردار اورانیم نیرو وارد می‌کند ( این نیرو به نیروی لورنتس معروف می‌باشد) و اتمهای اورانیوم را از مسیر مستقیم خود منحرف می‌کند. اما هسته‌های سنگین اورانیم (238U ) نسبت به هسته‌های سبکتر (235U ) انحراف کمتری دارند و درنتیجه از این طریق می‌توان 235U را از اورانیوم طبیعی تفکیک کرد.



 

کاربردهای اورانیوم غنی شده

  • شرایطی ایجاد کرده اند که نسبت 235U به 238U را به 5 درصد می‌‏رساند. برای این کار و تخلیص کامل اورانیوم از سانتریفوژهای بسیار قوی استفاده ‏می‌کنند.

  • برای ساختن نیروگاه اتمی ، اورانیوم طبیعی و یا اورانیوم غنی شده بین 1 تا 5 ‏درصد کافی است.

  • برای تهیه بمب اتمی حداقل 5 تا 6 کیلوگرم 235U صد درصد خالص نیاز ‏است. در صنایع نظامی از این روش استفاده نمی‌شود و بمبهای اتمی را از 239Pu که سنتز و تخلیص شیمیایی آن بسیار ساده‌تر است تهیه ‏می‌کنند.

نحوه تولید سوخت پلوتونیوم رادیو اکتیو

این عنصر ناپایدار را در نیروگاههای بسیار قوی می‌سازند که تعداد نوترونهای ‏موجود در آنها از صدها هزار میلیارد نوترون در ثانیه در سانتیمتر مربع تجاوز ‏می‌کند. عملا کلیه بمبهای اتمی موجود در زراد خانه‌های جهان از این عنصر ‏درست می‌شود.‏ روش ساخت این عنصر در داخل نیروگاههای هسته‌ای به این صورت که ‏ایزوتوپهای 238U شکست پذیر نیستند، ولی جاذب نوترون کم انرژی هستند. تعدادی از نوترونهای حاصل از شکست 235U را ‏جذب می‌کنند و تبدیل به 239U می‌شوند. این ایزوتوپ از اورانیوم بسیار ‏ناپایدار است و در کمتر از ده ساعت تمام اتمهای بوجود آمده تخریب ‏می‌شوند.

در درون هسته پایدار 239U یکی از نوترونها خود به خود به ‏پروتون و یک الکترون تبدیل می‌شود. بنابراین تعداد پروتونها یکی اضافه شده و عنصر جدید را که 93 پروتون دارد ‏نپتونیوم می‌نامند که این عنصر نیز ناپایدار است و یکی از نوترونهای آن خود به ‏خود به پروتون تبدیل شده و در نتیجه به تعداد پروتونها یکی اضافه شده و عنصر ‏جدید پلوتونیم را که 94 پروتون دارد ایجاد می‌کنند. این کار حدودا در مدت یک هفته ‏صورت می‌گیرد
اولین دیدگاه را شما بگذارید

  

در همه رآکتورها، قلب رآکتور که دمای بسیار زیادی دارد باید خنک شود. در یک نیروگاه هسته ای، سیستم خنک ساز به نوعی طراحی می‌شود که از گرمای آزاد شده به بهترین شکل ممکن استفاده شود. در اغلب این سیستمها از آب استفاده می‌شود. اما آب نوعی کند کننده هم محسوب می‌شود و از این رو نمی تواند در رآکتورهای سریع مورد استفاده قرار گیرد. در رآکتورهای سریع از سدیم مذاب یا نمک های سدیم استفاده می‌شود و دمای عملیاتی خنک ساز بالاتر است. در رآکتورهایی که برای تبدیل مورد طراحی شده اند، به راحتی گرمای آزاد شده را در محیط آزاد می‌کنند.
در یک نیروگاه هسته ای، رآکتور کند منبع آب را گرم می‌کند و آن را به بخار تبدیل می‌کند. بخار آب توربین بخار را به حرکت در می‌آورد ، توربین نیز ژنراتور را می‌چرخاند و به این ترتیب انرژی تولید می‌شود. این آب و بخار آن در تماس مستقیم با راکتور هسته ای است و از این رو در معرض تابش های شدید رادیواکتیو قرار می‌گیرند. برای پیشگیری از هر گونه خطر مرتبط با این آب رادیواکتیو، در برخی رآکتورها بخار تولید شده را به یک مبدل حرارتی ثانویه وارد می‌کنند و از آن به عنوان یک منبع گرمایی در چرخه دومی از آب و بخار استفاده می‌کنند. بدین ترتیب آب و بخار رادیواکتیو هیچ تماسی با توربین نخواهند داشت

انواع رآکتورهای گرمایی
در در رآکتورهای گرمایی علاوه برکند کننده، سوخت هسته ای ( ایزوتوپ قابل شکافت القایی)، مخزن بخار و لوله های منتقل کننده آن، دیواره های حفاظتی و تجهیزات کنترل و مشاهده سیستم رآکتور نیز وجود دارند. البته بسته به این که این رآکتورها از کانالهای سوخت فشرده شده، مخزن بزرگ بخار یا خنک کننده گازی استفاده کنند، می‌توان آنها را به سردسته تقسیم کرد.
الف - کانالهای تحت فشار در رآکتورهای RBMK و CANDU استفاده می‌شوند و می‌توان آنها را در حال کارکردن رآکتور، سوخت رسانی کرد.
ب - مخزن بخار پرفشار داغ، رایج ترین نوع رآکتور است و در اغلب نیروگاههای هسته ای و رآکتورهای دریایی ( کشتی، ناوهواپیمابر یا زیردریایی ) از آن استفاده می‌شود. این مخزن می‌تواند به عنوان لایه حفاظتی نیز عمل کند.
ج - خنک سازی گازی: در این رآکتورها به جای آب، از یک سیال گازی شکل برای خنک کردن رآکتور استفاده می‌شود. این گاز در یک چرخه گرمایی با منبع حرارتی راکتور قرار می‌گیرد و معمولاً از هلیوم برای آن استفاده می‌شود، هر چند که نیتروژن و دی اکسید کربن نیز کاربرد دارند. در برخی رآکتورهای جدید، رآکتور به قدری گرما تولید می‌کند که گاز خنک کن می‌تواند مستقیما یک توربین گازی را بچرخاند، در حالی که در طراحی های قدیمی تر گاز خنک کن را به یک مبدل حرارتی می‌فرستادند تا در یک چرخه دیگر، آب را به بخار تبدیل کند و بخار داغ، یک توربین بخار را بگرداند.

بقیه اجزای نیروگاه هسته ای
غیر از رآکتور که منبع گرمایی است، تفاوت اندکی بین نیروگاه هسته ای و یک نیروگاه حرارتی تولید برق با سوخت فسیلی وجود دارد.
مخزن بخار تحت فشار معمولا درون یک ساختمان بتونی تعبیه می‌شود که این ساختمان به عنوان یک سد حفاظتی در برابر تابش رادیواکتیو عمل می‌کند. این ساختمان هم درون یک مخزن بزرگتر فولادی قرار می‌گیرد. هسته رآکتور و تجهیزات مرتبط با آن درون این مخزن فولادی قرار گرفته اند و کارکنان می‌توانند راکتور را تخلیه یا سوخت رسانی کنند. وظیفه این مخزن فولادی، جلوگیری از نشت هر گونه گاز یا مایع رادیواکتیو از درون سیال است.
در نهایت این مخزن فولادی هم به وسیله یک ساختمان بتونی خارجی محافظت می‌شود. این ساختمان به قدری محکم است که در برابر اصابت یک هواپیمای جت مسافربری ( مشابه حادثه یازده سپتامبر ) هم تخریب نمی شود. وجود این ساختمان حفاظتی دوم برای جلوگیری از انتشار مواد رادیواکتیو در اثر هرگونه نشت از حفاظ اول ضروری است. در حادثه انفجار چرنوبیل، فقط یک ساختمان حفاظتی وجود داشت و همان موجب شد موادراکتیو در سطح اروپا پخش شود.

رآکتورهای هسته ای طبیعی
در طبیعت هم می‌توان نشانه هایی از رآکتور هسته ای پیدا کرد، البته به شرطی که تمام عوامل مورد نیاز به طور طبیعی در کنار هم قرار گرفته باشند. تنها نمونه شناخته شده یک رآکتور هسته ای طبیعی دو میلیارد سال پیش در منطقه اوکلو در کشور گابون ( قاره آفریقا ) فعالیتش را آغاز کرده است. البته دیگر چنین رآکتورهایی روی زمین شکل نمی گیرند، زیرا واپاشی رادیواکتیو این مواد ( به خصوص U-235 ) در این زمان طولانی 5/4 میلیارد ساله ( سن زمین )، فراوانی U-235 را در منابع طبیعی این رآکتورها بسیار کاهش داده است، به طوری که مقدار آن به پایین تر از حد مورد نیاز آغاز یک واکنش زنجیره ای رسیده است.
این رآکتورهای طبیعی زمانی شکل گرفتند که معادن غنی از اورانیوم به تدریج از آب زیرزمینی یا سطحی پر شدند. این آب به صورت کند کننده عمل کرد و واکنش های زنجیره ای شدیدی به وقوع پیوست. با افزایش دما، آب کند کننده بخار می‌شد و رآکتور خاموش شد. پس از مدتی، این بخارها به مایع تبدیل می‌شدند و دوباره رآکتور به راه می‌افتاد. این سیستم خودکار و بسته، یک رآکتور را کنترل می‌کرد و برای صدها هزار سال، این رآکتور را فعال نگاه می‌داشت.
مطالعه و بررسی این رآکتورهای هسته ای طبیعی بسیار ارزشمند است، زیرا می‌تواند به تحلیل چگونگی حرکت مواد رادیواکتیو در پوسته زمین کمک کند. اگر زمین شناسان بتوانند را از این حرکت‌ها را شناسایی کنند، می‌توانند راه حل های جدیدی برای دفن زباله های هسته ای پیدا کنند تا روزی خدای ناکرده، این ضایعات خطرناک به منابع آب سطح زمین نشت نکنند و فاجعه ای بشری به بار نیاورند.

انواع رآکتورهای گرمایی
الف - کند سازی با آب سبک:
a- رآکتور آب تحت فشار Pressurized Water Reactor(PWR)
b- رآکتور آب جوشان Boiling Water Reactor(BWR)
c- رآکتور D2G

ب- کند سازی با گرافیت:
a- ماگنوس Magnox
b- رآکتور پیشرفته با خنک کنندی گازی Advanced Gas-Coaled Reactor (AGR)
c- RBMK
d- PBMR

ج - کند کنندگی با آب سنگین:
a - SGHWR
b - CANDU

رآکتور آب تحت فشار، PWR
رآکتور PWR یکی از رایج ترین راکتورهای هسته ای است که از آب معمولی هم به عنوان کند ساز نوترونها و هم به عنوان خنک ساز استفاده می‌کند. در یک PWR، مدار خنک اولیه از آب تحت فشار استفاده می‌کند. آب تحت فشار، در دمایی بالاتر از آب معمولی به جوش می‌آید، از این دوچرخه خنک ساز اولیه را به گونه ای طراحی می‌کنند که آب با وجود آنکه دمایی بسیار بالا دارد، جوش نیاید و به بخار تبدیل نشود. این آب داغ و تحت فشار در یک مبدل حرارتی، گرما را به چرخه دوم منتقل میکند که یک نوع چرخه بخار است و از آب معمولی استفاده می‌کند. دراین چرخه آب جوش می‌آید و بخار داغ تشکیل می‌شود، بخار داغ یک توربین بخار را می‌چرخاند، توربین هم یک ژنراتور و در نهایت ژنراتور، انرژی الکتریکی تولید می‌کند.
PWR به دلیل دارابودن چرخه ثانویه با BWR تفاوت دارد. از گرمای تولیدی در PWR به عنوان سیستم گرم کننده درنواحی قطبی نیز استفاده شده است. این نوع رآکتور، رایج ترین نوع رآکتورهای هسته ای است و در حال حاضر، بیش از 230 عدد از آنها در نیروگاههای هسته ای تولید برق و صدها رآکتور دیگر برای تأمین انرژی تجهیزات دریایی مورد استفاده قرار می‌گیرند.

خنک کننده
همان طور که می‌دانید، برخورد نوترونها با سوخت هسته ای درون میله های سوخت، موجب شکافت هسته اتمها می‌شود و این فرآیند هم به نوبه خود، گرما و نوترونهای بیشتری آزاد می‌کند. اگر این حرارت آزاد شده منتقل نشود، ممکن است میله های سوخت ذوب شوند و ساختار کنترلی رآکتور از بین برود ( و البته خطرهای مرگ آوری که به دنبال آن روی می‌دهند. ) در PWR، میله های سوخت به صورت یک دسته در ساختاری، ترسیمی قرار گرفته اند و آب از کف رآکتور به بالا جریان پیدا می‌کند. آب از میان این میله های سوخت عبور می‌کند و به شدت گرم می‌شود، به طوری که به دمای 325 درجه سانتی گراد می‌رسد. درمبدل حرارتی، این آب داغ موجب داغ شدن آب در چرخه دوم می‌شود و بخاری با دمای 270 درجه سانتی گراد تولید می‌کند تا توربین را بچرخاند.

کند کننده
نوترونهای حاصل از یک شکافت هسته ای بیش از آن حدی گرمند که بتوانند یک واکنش شکافت هسته ای را آغاز کنند. انرژی آنها را باید کاهش داد تا با محیط اطراف خود به تعادل گرمایی برسند. محیط اطراف نوترونها ( قلب رآکتور ) دمایی در حدود 450 درجه سانتی گراد دارد.
در یک PWR، نوترونها در پی برخورد با مولکولهای آب خنک ساز، انرژی جنبشی خود را از دست می‌دهند؛ به طوری که پس از 8 تا 10 برخورد ( البته به طور متوسط ) با محیط هم دما می‌شوند. در این حالت، احتمال جذب نوترونها از سوی هسته U-235 بسیار زیاد است ودر صورت جذب، بالافاصله هسته U-236 جدید دچار شکافت می‌شود.
مکانیسم حساسی که هر رآکتور هسته ای را کنترل می‌کند، سرعت آزاد سازی نوترونها در طول یک فرآیند شکافت است به طور متوسط از هر شکافت، دونوترون و مقدار زیادی انرژی آزاد می‌شود. نوترونهای آزاد شده اگر با هسته U-235 دیگری برخورد کنند، شکافت دیگری را سبب می‌شوند و در نهایت یک واکنش زنجیره ای روی می‌دهد. اگر تمام این نوترونها در یک لحظه آزاد شوند، تعدادشان به قدری زیاد می‌شود که باعث ذوب شدن راکتور خواهد شد. ( تعداد ذرات پر انرژی، دمای یک سیستم را تعیین می‌کند. معادله بوتنرمن، این ارتباط را توصیف می‌کند. ) خوشبختانه برخی از این نوترونها پس از یک بازه زمانی نه چندان کوتاه ( حدود یک دقیقه ) تولید می‌شوند و سبب می‌شوند دیگر عوامل کنترل کننده از این تاخیر زمانی استفاده کرده، اثر خود را داشته باشند.
یکی از مزیت های استفاه از آب در PWR، این است که اثر کند سازی آب با افزایش دما کاهش می‌یابد. در حالت عادی، آب در فشار 150 برابر فشار یک اتمسفر قرار دارد ( حدود 15 مگا پاسکال ) و در قلب رآکتور به دمای 325 درجه سانتی گراد می‌رسد. درست است که آب با فشار پانزده مگا پاکسال در این دما جوش نمی آید، ولی به شدت از خاصیت کند کنندگی اش کاسته می‌شود، بنابراین آهنگ واکنش شکافت هسته ای کاهش می‌یابد، حرارت کمتری تولید می‌شود و دما پایین می‌آید. دما که کاهش یابد، توان رآکتور افزایش می‌یابد و دما که افزایش یابد توان راکتور کاهش می‌یابد؛ پس خود سیستم PWR دارای یک سیستم خود تعادلی در رآکتور است و تضمین می‌کند توان رآکتور در کمترین میزان مورد نیاز برای تأمین گرمای سیستم بخار ثانویه است.
در اغلب رآکتورهای PWR، توان رآکتور را در دوره فعالیت معمولی با تغییرات غلظت بورون ( در شکل اسید بوریک ) در چرخه خنک کننده اولیه کنترل اولیه کنترل می‌کنند سرعت جریان خنک کننده اول در رآکتورهای PWR معمولی ثابت است. بورون یک جذب کننده قوی نوترون است و با افزایش یا کاهش غلظت آن، می‌توان شدت فعالیت راکتور را کاهش یا افزایش داد. برای این کار، یک سیستم کنترلی پیچیده شامل پمپ های فشار بالا که آب را در فشار 15 مگا پاسکال از چرخه خارج می‌کند، تجهیزات تغییر غلظت اسید بوریک و تزریق مجدد آب به چرخه خنک ساز مورد نیاز است.
یکی از اشکالات راکتورهای شکافت، این است که حتی پس از توقف واکنش شکافت، هنوز هم واپاشی های رادیواکتیوی انجام می‌شود و حرارت زیادی آزاد می‌شود که می‌تواند راکتور را ذوب کند. البته سیستم های حفاظتی و پشتیبانی متعددی برای جلوگیری از این واقعه وجود دارند، با این حال ممکن است در اثر پیچیدگی های این سیستم، برهمکنش های پیش بینی نشده یا خطاهای عملیاتی مرگ آفرینی در شرایط اضطراری روی دهند. در نهایت، هر رآکتور با یک حفاظ ساختمانی بتونی احاطه شده است که آخرین سد در برابر تشعشعات رادیواکتیو است.

رآکتور آب جوشان، BWR
در رآکتور آب جوشان، از آب سبک استفاده می‌شود. آب سبک، آبی است که در آن فقط هیدروژن معمولی وجود دارد. ) BWR اختلاف زیادی با رآکتور آب تحت فشار ندارد، غیر از اینکه در BWR فقط یک چرخه خنک کننده وجود دارد و آب مستقیما در قلب راکتور به جوش می‌آید. فشار آب در BWR کمتر از PWR است، به طوری که در بیشترین مقدار به 75 برابر فشار جو می‌رسد ( 5/7 مگا پاسکال ) و بدین ترتیب آب در دمای 285 درجه سانتی گراد به جوش می‌آید.
رآکتور BWR به شکلی طراحی شده که بین 12 تا 15 درصد آب درون قلب رآکتور به شکل بخار در قسمت بالای آن قرار می‌گیرد. بدین ترتیب عملکرد بخش بالایی و پایینی هسته رآکتور با هم تفاوت دارند. در بخش بالایی قلب رآکتور، کند سازی کمتری صورت می‌گیرد و در نتیجه بخش بالایی کمتر است.
در حالت کلی دو مکانیسم برای کنترل BWR وجود دارد: استفاده از میله های کنترل و تغییر جریان آب درون راکتور.
الف - بالا بردن یا پایین آوردن میله های کنترل، روش معمولی کنترل توان رآکتور در حالت راه اندازی رآکتور تا رسیدن به 70 درصد حداکثر توان است. میله های کنترل حاوی مواد جذب کننده نوترون هستند؛ در نتیجه پایین آوردن آنها موجب افزایش جذب نوترون در میله ها، کاهش جذب نوترون در سوخت و درنهایت کاهش آهنگ شکافت هسته ای و پایین آمدن توان رآکتور می‌شود. بالا بردن میله های سوخت دقیقاً نتیجه معکوس می‌دهد.
ب - تغییرات جریان آب درون رآکتور، زمانی برای کنترل رآکتور مورد استفاده قرار می‌گیرد که راکتور بین 70 تا صد درصد توان خود کار می‌کند. اگر جریان آب درون رآکتور افزایش یابد، حباب های بخار در حال جوش سریع تر از قلب راکتور خارج می‌شوند و آب درون قلب رآکتور بیشتر می‌شود. افزایش مقدار آب به معنی افزایش کندسازی نوترون و جذب بیشتر نوترونها از سوی سوخت است و این یعنی افزایش توان راکتور. با کاهش جریان آب درون رآکتور، حباب‌ها بیشتر در رآکتور باقی می‌مانند، سطح آب کاهش می‌یابد و به دنبال آن کندسازی نوترونها و جذب نوترون هم کاهش می‌یابد و در نهایت توان رآکتور کاهش می‌یابد.
بخار تولید شده در قلب رآکتور از شیرهای جدا کننده بخار و صفحات خشک کن ( برای جذب هر گونه قطرات آب داغ ) عبور می‌کند و مستقیماً به سمت توربین های بخار که بخشی از مدار رآکتور محسوب می‌شوند، می‌رود. آب اطراف رآکتور همواره در معرض تابش و آلودگی رادیواکتیو است و از آنجا که توربین هم در تماس مستقیم با این آب است، باید پوشش حفاظتی داشته باشد. اغلب آلودگی های درون آب عمر کوتاهی دارند ( مانند N16 که بخش اعظم آلودگی های آب را تشکیل می‌دهد و نیمه عمرش تنها 7 ثانیه است )، بنابراین مدت کوتاهی پس از خاموش شدن رآکتور می‌توان به قسمت توربین وارد شد.
در رآکتور BWR، افزایش نسبت بخار آب به آب مایع درون رآکتور موجب کاهش گرمای خروجی می‌شود. با این حال، یک افزایش ناگهانی در فشار بخار، سبب بروز یک کاهش ناگهانی در نسبت بخار به آب مایع درون رآکتور می‌شود که خود، سبب افزایش توان خروجی می‌شود. این شرایط و دیگر حالت های خطرساز، موجب شده است از سیستم کنترلی اسید بوریک ( بورون ) نیز استفاده شود، بدین شکل که در سیستم پشتیبان خاموش کننده اضطراری، محلول اسید بوریک با غلظت بالا به چرخه خنک کننده تزریق می‌شود. خوبی این سیستم این است که اسید اوریک، یک خورنده قوی است و معمولا در PWR سبب می‌شود تلفات ناشی از خوردگی قابل توجه باشد. در بدترین شرایط اضطراری که تمام سیستم های امنیتی از کار افتاد، هر رآکتور به وسیله یک ساختمان حفاظتی از محیط اطراف جدا شده است. در یک رآکتور BWR جدی، حدود 800 دسته واحد سوخت قرار می‌گیرد و در هر دسته بین 74 تا 100 میله سوخت قرار می‌گیرد. این چنین حدود 140 تن اورانیوم در قلب رآکتور ذخیره می‌شود.

• رآکتور D2G
رآکتور هسته ای D2G را می‌توان در تمام ناوهای دریایی ایالات متحده می‌توان پیدا کرد. D2G مخفف عبارت زیراست:
رآکتور ناو جنگی D=Destroyer-sized reactor
نس دوم 2=Second Geneation
ساخت جنرال الکتریک G= General - Electric built
بدین ترتیب، D2G را می‌توان مخفف این عبارت دانست: رآکتور هسته ای نسل دوم ویژه ناوهای جنگی ساخت جنرال الکتریک. این رآکتور برای تولید حداکثر 150 مگا وات انرژی الکتریکی و عمر مفید 15 سال مصرف معمولی طراحی شده است.
در این رآکتور، برای مخزن بخار دو رآکتور وجود دارد و طوری طراحی شده که بتوان هر دو اتاق توربین را با یک رآکتور به راه انداخت. اگر هر دو رآکتور فعال باشند، ناو به سرعت 32 گره می‌رسد. اگر یک رآکتور فعال باشد و توربین‌ها متصل به هم باشند، سرعت ناو به 25 تا 27 گره خواهد رسید و اگر فقط یک رآکتور فعال باشد ولی توربین‌ها جدا باشند، سرعت فقط 15 گره خواهد بود

 


اولین دیدگاه را شما بگذارید

  

واکنشهای هسته‌ای (Reactions Nuclear)


تبدیلات خود بخودی یا مصنوعی بعضی از هسته‌های اتمی به هسته دیگر که نتیجه بهم خوردن ترکیب ساختمان هسته یا تغییر در تعداد نوکلئونها (ذرات هسته‌ای) است واکنشهای هسته‌ای نام دارند.

روشهای انجام واکنشهای هسته‌ای

  • تجزیه کامل تمامی هسته‌ها زمانی که بوسیله یک ذره یا انرژی فوق العاده زیاد برخورد کند (یا ذره دیگری جذب کنند) معمولا نوترون است.

  • شکست هسته به دو هسته غیر مساوی توأم با انتشار پروتون ، نوترون ، ذره آلفا ، اشعه گاما و واکنشهای ترکیب هسته‌ای که تشکیل یک هسته سنگینتر در اثر تجدید ساختمان هسته عناصر سبکتر که همراه با آزاد شدن مقادیر زیاد انرژی است ، صورت می‌گیرد.

  • انرژی حاصل از واکنشهای ترکیب یا (همجوشی) 8 برابر بیشتر از انرژی هسته‌ای واکنشهای شکست هسته‌ای است.

راههای مختلف تولید انرژی هسته‌ای




تصویر

شکافت هسته‌ای (Nuclear Fission)

فرض می شود نوترون منفردی به یک قطعه ایزوتوپ 235U نفوذ کند در اثر برخورد به هسته اتم 235U ، اورانیوم به دو قسمت شکسته می‌شود، مقادیر زیادی نیز انرژی آزاد می‌گردد. در حدود (200Mev) اما مسئله مهمتر اینکه نتیجه شکستن هسته 235U آزادی دو نوترون است که می‌تواند دو هسته دیگر را شکسته و چهار نوترون را بوجود آورد.

این چهار نوترون نیز چهار هسته 235U را می‌شکند چهار هسته شکسته شده تولید هشت نوترون می‌کنند که قادر به شکستن همین تعداد هسته اورانیوم می‌باشند، سپس شکست هسته‌ای و آزاد شدن نوترونها بصورت زنجیروار به سرعت تکثیر و توسعه می‌یابد.

در هر دوره تعداد نوترونها دو برابر می‌شود، در یک لحظه واکنش زنجیری خود بخودی شکست هسته‌ای شروع می‌گردد. در واکنشهای کنترل شده تعداد شکست در واحد زمان و نیز مقدار انرژی به تدریج افزایش یافته و پس از رسیدن به مقداری دلخواه ثابت نگهداشته می‌شود. فرض کنیم یک ذره (a) به یک هسته ساکن (x) برخورد کند در نتیجه در واکنشهای هسته‌ای هسته (y) و ذره (b) تولید می‌شود که این واکنش را بصورت زیر می‌نویسم:


a + x ? b + y

مراحل شکست 235U

1n + 235U ? 234U ? 144Ba+89Kr + 3 1n


در واکنش اخیر در نتیجه برخورد نوترون حرارتی به 235U آن را به 235U تحریک شده تبدیل می‌کند. نهایتا اورانیوم تحریک شده نیز بعد از شکافت ، به باریم و کریپتون و سه تا نوترون تولید می‌شود.

مواد قابل شکست (Fissionable Materials)

موادی که وقتی تحت تابش نوترون قرار می‌گیرند انجام یک واکنش شکست هسته ای را ممکن می سازند چنین خاصیتی در عناصر زیر وجود دارد: 239Pu ، 235U ، 235U ، ایزوتوپ 233U ، 235U بطور مصنوعی در راکتورهای هسته‌ای با تاباندن نوترون به 233Th بوجود می‌آید.

محصولات شکست اورانیوم (Uranium Fission Puroduets)

زمانی که هسته اتمی 235U به دو قسمت شکسته می‌شود عناصر زیر تولید می‌شوند: استرتیوم 90 ، کریپتون 91 ، ایتریوم 91 ، زیرکونیوم 95 ، 126I ، 137U ، باریم 142 ، سریم 144 قابل ذکر هستند.

همجوش هسته‌ای (Nuclear Fusion)

همجوشی هسته‌ای عبارت است از اتحاد عناصر سبک برای تشکیل عناصر سنگین تر که نوع واکنش را واکنش همجوشی گویند تا بحال در انفجار بمب هیدروژنی قوی و بسیار خوب تشخیص داده شده است. این واکنش برای انسان چندان مفید نیست و بنابراین دانشمندان بطور جدی کوشش می کنند تا واکنش همجوشی را کنترل کنند یعنی در کیف کاهش سرعت واکنش به درجه‌ای که بتواند برای مقاصد صلح جویانه مفید باشد.

در مرحله اول این واکنشها بصورت کنترل شده برای تولید برق استفاده می‌شود. همچنین انرژی تولید شده در این واکنش 8 برابر انرژی تولید شده سر در شکافت هسته‌ای می‌باشد. منشأ انرژی تابشی خورشید و دیگر ستاره‌ها یک سری از واکنشهای هسته‌ای انرژی زا است. اتمهایی که دراین واکنشها در درون ستاره شرکت می‌کنند کاملا یونیزه‌اند. یعنی تمامی الکترونها از آن کنده شده است. چنین مجموعه‌ای از ذرات باردا را پلاسما می‌نامند.

دوتریوم و تریتیوم ایزوتوپهای هیدروژن مواد قابل احتراق همجوشی هسته‌ای را تشکیل می‌دهند. هسته دوتریوم از یک نوترون و یک پروتون تشکیل می‌یابد. هسته تریتیوم دارای دو نوترون و یک پروتون است.



تصویر

سوختهای همجوشی

ملاحظات فرآیندهای طبیعی و نتایج حاصل از آنها نشان داده است که واکنشهای همجوشی گوناگونی وجود دارد. از جمله از واکنشهای همجوشی هسته‌ای واکنش دوترون با تریتیوم می‌باشد.

معادله واکنشهای همجوشی هسته‌ای

نخستین واکنش همجوشی قابل کنترل توسط رابطه زیر ارائه شد (ترکیب ایزوتوپهای هیدوژن)
2H + 3H ? 1n + 4He

در این واکنش انرژیی معادل 17.6 Mev آزاد می‌شود، که از آن می‌شود در کادبردهای صنعتی و نظامی استفاده نمود
اولین دیدگاه را شما بگذارید

  


طراحی پوسته توسط تیم پارسی بلاگ