سفارش تبلیغ
صبا ویژن
طول ناحیه در قالب بزرگتر از حد مجاز
واکنشهای هسته‌ای (Reactions Nuclear)


تبدیلات خود بخودی یا مصنوعی بعضی از هسته‌های اتمی به هسته دیگر که نتیجه بهم خوردن ترکیب ساختمان هسته یا تغییر در تعداد نوکلئونها (ذرات هسته‌ای) است واکنشهای هسته‌ای نام دارند.

روشهای انجام واکنشهای هسته‌ای

  • تجزیه کامل تمامی هسته‌ها زمانی که بوسیله یک ذره یا انرژی فوق العاده زیاد برخورد کند (یا ذره دیگری جذب کنند) معمولا نوترون است.

  • شکست هسته به دو هسته غیر مساوی توأم با انتشار پروتون ، نوترون ، ذره آلفا ، اشعه گاما و واکنشهای ترکیب هسته‌ای که تشکیل یک هسته سنگینتر در اثر تجدید ساختمان هسته عناصر سبکتر که همراه با آزاد شدن مقادیر زیاد انرژی است ، صورت می‌گیرد.

  • انرژی حاصل از واکنشهای ترکیب یا (همجوشی) 8 برابر بیشتر از انرژی هسته‌ای واکنشهای شکست هسته‌ای است.

راههای مختلف تولید انرژی هسته‌ای




تصویر

شکافت هسته‌ای (Nuclear Fission)

فرض می شود نوترون منفردی به یک قطعه ایزوتوپ 235U نفوذ کند در اثر برخورد به هسته اتم 235U ، اورانیوم به دو قسمت شکسته می‌شود، مقادیر زیادی نیز انرژی آزاد می‌گردد. در حدود (200Mev) اما مسئله مهمتر اینکه نتیجه شکستن هسته 235U آزادی دو نوترون است که می‌تواند دو هسته دیگر را شکسته و چهار نوترون را بوجود آورد.

این چهار نوترون نیز چهار هسته 235U را می‌شکند چهار هسته شکسته شده تولید هشت نوترون می‌کنند که قادر به شکستن همین تعداد هسته اورانیوم می‌باشند، سپس شکست هسته‌ای و آزاد شدن نوترونها بصورت زنجیروار به سرعت تکثیر و توسعه می‌یابد.

در هر دوره تعداد نوترونها دو برابر می‌شود، در یک لحظه واکنش زنجیری خود بخودی شکست هسته‌ای شروع می‌گردد. در واکنشهای کنترل شده تعداد شکست در واحد زمان و نیز مقدار انرژی به تدریج افزایش یافته و پس از رسیدن به مقداری دلخواه ثابت نگهداشته می‌شود. فرض کنیم یک ذره (a) به یک هسته ساکن (x) برخورد کند در نتیجه در واکنشهای هسته‌ای هسته (y) و ذره (b) تولید می‌شود که این واکنش را بصورت زیر می‌نویسم:


a + x ? b + y

مراحل شکست 235U

1n + 235U ? 234U ? 144Ba+89Kr + 3 1n


در واکنش اخیر در نتیجه برخورد نوترون حرارتی به 235U آن را به 235U تحریک شده تبدیل می‌کند. نهایتا اورانیوم تحریک شده نیز بعد از شکافت ، به باریم و کریپتون و سه تا نوترون تولید می‌شود.

مواد قابل شکست (Fissionable Materials)

موادی که وقتی تحت تابش نوترون قرار می‌گیرند انجام یک واکنش شکست هسته ای را ممکن می سازند چنین خاصیتی در عناصر زیر وجود دارد: 239Pu ، 235U ، 235U ، ایزوتوپ 233U ، 235U بطور مصنوعی در راکتورهای هسته‌ای با تاباندن نوترون به 233Th بوجود می‌آید.

محصولات شکست اورانیوم (Uranium Fission Puroduets)

زمانی که هسته اتمی 235U به دو قسمت شکسته می‌شود عناصر زیر تولید می‌شوند: استرتیوم 90 ، کریپتون 91 ، ایتریوم 91 ، زیرکونیوم 95 ، 126I ، 137U ، باریم 142 ، سریم 144 قابل ذکر هستند.

همجوش هسته‌ای (Nuclear Fusion)

همجوشی هسته‌ای عبارت است از اتحاد عناصر سبک برای تشکیل عناصر سنگین تر که نوع واکنش را واکنش همجوشی گویند تا بحال در انفجار بمب هیدروژنی قوی و بسیار خوب تشخیص داده شده است. این واکنش برای انسان چندان مفید نیست و بنابراین دانشمندان بطور جدی کوشش می کنند تا واکنش همجوشی را کنترل کنند یعنی در کیف کاهش سرعت واکنش به درجه‌ای که بتواند برای مقاصد صلح جویانه مفید باشد.

در مرحله اول این واکنشها بصورت کنترل شده برای تولید برق استفاده می‌شود. همچنین انرژی تولید شده در این واکنش 8 برابر انرژی تولید شده سر در شکافت هسته‌ای می‌باشد. منشأ انرژی تابشی خورشید و دیگر ستاره‌ها یک سری از واکنشهای هسته‌ای انرژی زا است. اتمهایی که دراین واکنشها در درون ستاره شرکت می‌کنند کاملا یونیزه‌اند. یعنی تمامی الکترونها از آن کنده شده است. چنین مجموعه‌ای از ذرات باردا را پلاسما می‌نامند.

دوتریوم و تریتیوم ایزوتوپهای هیدروژن مواد قابل احتراق همجوشی هسته‌ای را تشکیل می‌دهند. هسته دوتریوم از یک نوترون و یک پروتون تشکیل می‌یابد. هسته تریتیوم دارای دو نوترون و یک پروتون است.



تصویر

سوختهای همجوشی

ملاحظات فرآیندهای طبیعی و نتایج حاصل از آنها نشان داده است که واکنشهای همجوشی گوناگونی وجود دارد. از جمله از واکنشهای همجوشی هسته‌ای واکنش دوترون با تریتیوم می‌باشد.

معادله واکنشهای همجوشی هسته‌ای

نخستین واکنش همجوشی قابل کنترل توسط رابطه زیر ارائه شد (ترکیب ایزوتوپهای هیدوژن)
2H + 3H ? 1n + 4He

در این واکنش انرژیی معادل 17.6 Mev آزاد می‌شود، که از آن می‌شود در کادبردهای صنعتی و نظامی استفاده نمود
اولین دیدگاه را شما بگذارید

  

مقدمه

راکتورهای هسته‌ای در کل از دو نوع شکافتی و همجوشی تشکیل شده‌اند و خود اینها با توجه به شرایط حاکم و اهداف مورد نظر به دسته‌های مختلفی تقسیم می‌شوند.

ردیف بندی بر حسب مصرف

  • تولید پولوتونیوم
  • تولید انرژی الکتریکی
  • پژوهشها و تولید شارهای شدید نوترونی
  • پیش رانش (در حال حاضر رانش فضایی و اتمی راکتورهای زیردریاییها)

ردیف بندی بر حسب ترازنامه کار

هر راکتوری یک ماده قابل احتراق و نیز یک ایزووتوپ بارور را شامل است که می‌تواند با جذب نوترونی به یک ماده شکافت تبدیل شود. 238U در راکتورهای حرارتی مانند راکتورهای سریع مورد استفاده قرار می‌گیرد. به بیان دیگر هر راکتوری یک ماده قابل شکافت را می‌سوزاند، ولی در همان زمان یک ماده شکافتی دیگر را می‌سازد. این راکتورها را زاینده گویند، در صورتی که هسته‌های قابل شکافت بیشتر از مصرف را تولید کند. فقط راکتورهایی با نوترونهای سریع می‌توانند زاینده باشند.



تصویر




ردیف بندی بر حسب سلسله مراتب

این ردیف بندی بطور مستقیم به قیمت تولیدی یک کیلو وات ساعت وابسته است. در این ردیف بندی با انتخاب ماده کند کننده (اول نوشته می‌شود) و ماده سرد کننده (بعد از آن نوشته می‌شود) مشخص می‌شود. انواع مختلف که مورد استفاده دارند:


  • گرافیت _ گاز

    گرمترین این راکتوها با اورانیوم طبیعی ، توان ویژه ای در حدود 2 مگا وات بر متر مکعب می دهند.

  • گرافیت _ آب

    این راکتورها با اورانیوم طبیعی برای منظورهای نظامی مورد استفاده قرار گرفته اند و برای تولید انرژی الکتریکی کم بهره هستند.

  • گرافیت _ فلز (یا نمک) مذاب

    سریم هممراه با کربور اورانیوم مورد استفاده قرار می گیردذ. نمکهای مذاب یک محیط سوختی مایع را به وحود می آورند و سرد کننده مخلوطی از ماده قابل احتراق و نمک مذاب است.

  • کند کننده آب سنگین
    • سرد کننده: آب سنگین
    • سرد کننده: آب سبک
    • سرد کننده گازی
  • آب سبک _ آب سبک

این راکتورهای پژوهشی با اورانیوم بسیار غنی شده معمولا توان کمتری دارند. این راکتورها در دو دسته ردیف بندی می‌شوند:


  1. آب تحت فشار (P.W.R): این روش برای پیشرانش زیر دریایی ، ناوهای دریایی و کشتیها مورد استفاده قرار می گیرند.

  2. آب جوشان (B.W.R): قسمتی از آب در مغز راکتور بخار شده و بخار تولید شده مستقیما توربین را بکار می اندازد.

راکتورهای هسته‌ای با دمای بالا

راکتورهای هسته‌ای با دمای بالا (HTR) می‌توانند در دماهای بسیار بالا ، گرما تولید کنند. کاربرد این راکتورها بیشتر برای تولید گرما و بویژه برای تولید هیدروژن یا ماده قابل احتراق ترکیبی و به این ترتیب تغییر تمام عادات مصرف انرژی است. این راکتورها از نوع راکتورهای با نوترونهای حرارتی ، با گردش هلیوم که تقریبا به دمای 700 درجه سانتیگراد برده می‌شود، در تجمعی از گرافیت و ذرات قابل شکافت به دمای کمتر از 1300 درجه سانتیگراد برده می‌شوند. این راکتورها بسیار مطمئن هستند، هلیوم گازی بدون خطر و رادیو اکتیویته آن کمتر و گستره دما بسیار بزرگ است. پسماندها و ضایعات آن بسیار کم است و می‌توانند الکتریسیته ، آب گرم ، بخار آب تولید کنند و در آینده دور می‌توان از آن به هیدروکربورها یا به توسط واکنشهای داخلی هیدروژن تولید کرد و بخشی از مسئله نفت را حل کرد.

راکتورهای همجوشی هسته‌ای

همجوشی هسته‌ای یک منبع انرژی پتانسیل است که آلودگی آن نسبتا کم ، تقریبا پایان ناپذیر ، ارزان قیمت و می‌تواند در دسترس همگان قرار گیرد.

توکاماک یکی از انواع راکتورهای همجوشی هسته‌ای

این نوع راکتور عمل محصورسازی را به خوبی انجام می‌دهد. طرح توکاماک در دهه پنجاه میلادی توسط روسها پیشنهاد شد. کلمه توکاماک از کلمات "toroidalnaya" ، "kamera" ، and "magnitnaya" به معنی " اتاقک مغناطیسی چنبره‌ای" گرفته شده است. یکی از دلایل و توجیهاتی که برای چنبره‌ای بودن محفظه‌های محصور سازی می‌شود بیان کرد این است که: توپ پر مویی را تصور کنید که شما قصد دارید موهای این توپ را شانه بزنید. شما هر طور و از هر طرف که بخواهید این کار را بکنید همیشه دو طرف از موهای توپ شانه نشده و نامنظم باقی می‌ماند.

حال به جای توپ فرض کنید که یک کره مغناطیسی داریم. می‌خواهیم که بردارهای میدان در سراسر اطراف این کره یکنواخت و منظم باشند (در واقع همه در یک جهت باشند). بنا به مثال این کار غیر ممکن بوده و نامنظمی در دو طرف کره باعث عدم پایداری محصور ساز می‌شود. ولی در یک محصور ساز چنبره‌ای چنین مشکلی وجود ندارد و یکنواختی میدان سراسر محصور ساز (توکاماک) باعث پایداری آن می‌شود. مهمترین و حیاتی‌ترین وظیفه یک ابزار همجوشی پایدار نگه داشتن پلاسما است.

اسفرومک نوع دیگری از راکتورهای همجوشی هسته‌ای

اسفرومک نوع دیگری از رآکتورهای همجوشی است که بر خلاف توکاماک که چنبره‌ای می‌باشد شکلی کروی دارد. البته تفاوت اسفرومک با توکاماک در این است که در مرکز اسفرومک هیچ جسم مادی وجود ندارد. اسفرومک متأسفانه با بی مهری مواجه شد و به اندازه توکاماک مورد توجه واقع نشد. در حالی که اسفرومک مدت زیادی بعد از توکاماک اختراع شد. در دهه گذشته اغلب تحقیقات در بخش انرژی همجوشی مغناطیسی روی توکاماک چنبره‌ای شکل برای رسیدن به واکنشهای همجوشی در سطح بالا متمرکز شده است.

کارکرد توکاماک

کار توکامک در ایالات متحده و خارج آن ادامه دارد، ولی سازمان دانشمندان انرژی همجوشی در حال بازدید از اسفرومک هستند. قسمت زیادی از علاقه تجدید شده به پروژه اسفرومک روی تحقیقات فعالی در لاورنس لیورمور در گروهی به نام (SSPX (Sustained Spheromak Physics Experiment متمرکز شده است. SSPX در 14ژوئن 1999 در مراسمی با حضور نماینده‌ای از DOE و با همکاری دانشمندانی از Sandia و آزمایشگاه ملی لس آلاموس آغاز به کار کرد. SSPX یک سری از از آزمایشات است که برای این طراحی شده که توانایی اسفرومک را در این مورد که اسفرومک چقدر این کیفیت را داراست که پلاسماهای داغ سوخت همجوشی را درون خود داشته باشد مشخص کند.

به عقیده رهبر پروژه SSPX توکاماک با دمای بالایی که در آن قابل دسترسی است (بیشتر از 100میلیون درجه سلسیوس که بارها بیشتر از دمای مرکز خورشید است) فعلا برنده جریان رهبری پروژه‌های همجوشی به حساب می آید. با این حال میدانهای مغناطیسی توکاماک بوسیله کویل سیم پیچهای بیرونی بسیار بزرگ که چنبره رآکتور را کاملا احاطه می‌کنند تولید می‌شوند. این کویلهای بسیار بزرگ هزینه بسیار زیاد و بی‌نظمی و اختلالاتی در کار رآکتور خواهند داشت.

در حالی که اسفرومکها پلاسمای بسیار داغ را در یک سیستم میدان مغناطیسی ساده و فشرده که فقط از یک سری ساده از کویلهای کوچک پایدار کننده استفاده می‌کند بوجود می‌آورد. میدانهای مغناطیسی قوی لازم درون پلاسما با چیزی که دینام مغناطیسی نامیده می‌شود تولید می‌شوند.

انرژی ده کردن

درنوعی از رآکتورهای شکافت هسته‌ای بوجود آوردن زنجیره واکنشها بوسیله برخورد دادن یک نوترون پر انرژی با هسته یک اتم 235U انجام می شود.به این صورت که وقتی که این نوترون وارد هسته اتم 238U می‌شود آن را به یک هسته 239U تبدیل می‌کند. از آنجا که این هسته ناپایدار است به سرعت واپاشی می‌کرده و اتمهای سبکتری به همراه سه نوترون پر انرژی دیگر را تولید می‌کند.
توضیح کاملتر اینکه در هسته‌های سنگین پایدار مثل اورانیوم بین نیروهای الکترو استاتیکی که مایل هستند ذرات تشکیل دهنده اتم را از هم دور کنند و نیروی هسته‌ای که آنها را کنار هم نگه می‌دارد تعادل بسیار حساسی وجود دارد، که این تعادل را می‌توان براحتی و به روشی که گفته شد به هم زده و واکنش شکافت هسته‌ای را شروع کنیم. واکنش حاصل از یک اتم با تولید کردن سه نوترون پر انرژی دیگر باعث می‌شود سه اتم اورانیوم دیگر وارد واپاشی بشوند. به همین ترتیب واکنش اصطلاحا زنجیره‌ای می‌شود.

قدر مسلم یک رآکتور همجوشی ایده آل رآکتوریست که در آن واکنشهای زنجیره ای داریم. در واقع هدف اساسی در راه ساخت رآکتور همجوشی هسته‌ای زنجیره‌ای کردن آن است. اگر قرار باشد که ما در این راه انرژی صرف کنیم تا یک مقدار کمتر از آنرا بدست بیاوریم مطمئنا این واکنش نه زنجیره‌ایست و نه مفید. دانشمندان این رشته مفهومی به نام گیرانش را تعریف کرده‌اند که به معنی این است که مقداری انرژی صرف شروع واکنش کنیم و انرژی بیشتر از سلسله واکنشها بگیریم، در واقع در شرایط گیرانش واکنش زنجیره‌ای می‌شود. یعنی نه تنها انرژی تولیدی یک واکنش برای انجام واکنش بعد کافیست، بلکه مقدار زیادی از آن هم اضافه است و می‌تواند در اختیار ما برای تولید برق قرار بگیرد.

اگر بخواهیم توکاماک یا هر وسیله دیگر که همجوشی در آن انجام می‌شود توان مفید داشته باشد، یعنی به ما انرژی بدهد باید شرایط خاصی داشته باشد. برای آنکه احتمال برخورد ذرات (یونهای) نامزد همجوشی بالا برود، اولا باید دمای خیلی بالایی درون آن تولید بشود و رآکتور هم بتواند بخوبی دمای بالا را تحمل کند. (این دما در محدوده ده به توان هفت درجه کلوین می‌باشد!) دوما رآکتور باید این توانایی را داشته باشد که درونش چگالی زیاد از یونها را وارد کرد و سوم اینکه زمان محصور سازی در آن طولانی باشد.

دمای بالا برای آن است که بتوانیم تقریبا مطمئن باشیم که می‌توانیم از سد محکم پتانسیل کولنی هسته‌ها بگذریم. چگالی زیاد هم برای این است که هر چه بیشتر احتمال برخوردهای کارا بالا برود. در این مسیر قانونی وجود دارد که نام آن معیار لاوسون است. به کمک این معیار می‌شود محاسبه کرد که آیا شرایط طوری هست که واکنش به گیرانش برسد یا نه. معیار لاوسن باید: مقدار چگالی در مدت زمان محصور سازی ، ده به توان 20 ذره در متر مکعب باشد تا این واکنش به گیرانش برسد (البته بستگی مستقیم با دمای پلاسما دارد).



img/daneshnameh_up/d/d1/_ggttqq_P00545E.jpg




رسیدن به شرایط مطلوب

برای رسیدن به شرایط مطلوب در واکنشهای گرما هسته‌ای که در آنها از سوخت دوتریم - تریتیم استفاده می‌شود دمای پلاسما (T) باید در محدوده یک الی سه ضرب در ده به توان هشت درجه کلوین و زمان محصورسازی TE باید در حدود یک الی سه ثانیه و چگالی (n) باید حوالی یک الی سه ضرب در ده به توان بیست ذره بر متر مکعب باشد. برای آغاز بکار رآکتور یعنی برای رسیدن به کمینه دمای حدود 108 کلوین باید از وسیله گرما ساز کمکی استفاده کرد.

بعد از محترق شدن سوخت مخلوط پلاسما باذرات آلفایی که در اثر احتراق اولیه بوجود آمده‌اند گرم شده و می‌توانیم دستگاه کمکی را از مدار خارج کنیم. از آن به بعد سرعت فعالیتهای همجوشی با افزایش دادن چگالی پلاسما افزایش پیدا می‌کند. با این وجود افزایش چگالی به بالای مرزهای تعیین شده و مطمئنا به معنی به هم خوردن پایداری پلاسما و یا اینکه خاموش شدن رآکتور را در پی خواهد داشت یا فاجعه. به عبارت دیگر (در صورت افزایش چگالی پلاسما) برای پایدار کردن پلاسما زمان محصور سازی و دمای احتراق و صد البته حجم پلاسما و نقطه پایداری پلاسما با افزایش چگالی بالاتر رفته و شرایط را برای کار سختتر می‌کند. به حالت تعادل در آوردن این مستلزمات با شکل بندی رآکتور در کوچکترین اسپکت ریتو که به شکل بندی مغناطیسی آن بستگی دارد مقدور می‌شود.



img/daneshnameh_up/c/cc/_ggttqq_P00545D.jpg




نسبت R به a را اسپکت ریتو می‌گویند.

خروج پسماندها

طبق شکل زیر که تصویری از سطح مقطع رآکتور می باشد نحوه کنترل و خارج کردن پسماندهای واکنش که همان هلیوم باشند را مشاهده می کنید.

واقعیت

ITER اسم مجموعه ایست که اولین رآکتور همجوشی جهان را که از نوع توکاماک خواهد بود، در فرانسه خواهند ساخت. این مجموعه متشکل است از کشورهای: روسیه ، اروپا ، ژاپن ، کانادا ، چین ، ایالات متحده و جمهوری کره. آنها در این راه از فوق هادیها برای قسمتهای مغناطیسی رآکتور استفاده می کنند. توان خروجی این توکامک 410 مگا وات خواهد بود.

اولین دیدگاه را شما بگذارید

  

ویژه هسته: یک هسته خاص با اعداد پروتونی (Z) و نوترونی (N) معین را گویند.


ایزوتوپ ها: ویژه هسته هایی با پروتون های یکسان و نوترون های مختلف را گویند.مثال:ایزوتوپ هیدروژن 21H و 31H می باشند.


ایزوتون ها: ویژه هسته هایی با نوترون برابر و پروتون مختلف را گویند.


ایزوبارها: ویژه هسته هایی با عدد جرمی A ی برابر (A=Z+N) را می گویند.


ایزومر: ویژه هسته هایی در حالت بر انگیخته با نیم عمر قابل اندازه گیری را ایزومر می نامند.


نوکلئون: ذرات تشکیل دهنده هسته) نوترون یا پروتون ) نوکلئون نام دارند.


مزون ها: ذراتی هستند با جرمی بین جرم الکترون و جرم پروتون. شناخته شده ترین مزون ها عبارتند از: مزون های پی که نقش مهمی در نیروهای هسته ای باز می کند و مزون های مو که در پدیده های پرتو کیهانی مهم است.


پوزیترون: الکترون با بار مثبت به عبارتی ذره ای با جرمی برابر جرم الکترون و باری برابر بار الکترون با علامت مثبت.


فوتون: کوانتوم تابش الکترومغناطیسی که معمولاً بصورت نور اشعه ایکس یا اشعه گاما ظاهر می شودبه عبارت دیگر کوچکترین ذرات سازنده نور فوتون ها هستند.


اسپین: صرفنظر از انرژی مربوط به چرخش الکترون به دور هسته اتمی الکترون نیز انرژی اضافی دیگری دارد که مربوط به چرخش حول محور خود می باشد .علاوه بر الکترون ذراتی دیگر مثل پروتون ، نوترون و فنون ها نیز به نوبه خود دارای اسپین می باشد.


آب سنگین: اصطلاحی که معمولا برای مولکول آب دارای دو اتم هیدروژن سنگین بکار می رود در این مولکول دو اتم دوتریوم بجای دو اتم هیدروژن جایگزین می شود (D2o). آب سنگین دارای خواص غیر عادی بوده و در راکتور های هسته ای نقش ایفا می کنند.


بتاترون: یک شتاب دهنده چرخه ای است این دستگاه شامل یک محفظه حلقوی بدون هوا است.که بین قطبهای یک الکترومغناطیس جای دارد یک چشمه الکترونی نیز داخل آن محفظه قرار گرفته است.


سوخت هسته ای پلوتنیم: یک عنصر شیمیائی یا عدد اتمی 92 و جرم اتمی 239 و یک فلز سمی است. به سادگی در هوا آتش می گیرد. کاربرد عمده پلوتونیم در راکتورهای هسته ای ، بمب های هسته ای ، چشمه ذره آلفا و اشعه گاما در پزشکی است.


کوانتا (Cuonta ): در سال 1901 فیزیکدان معاصر آلمانی ماکس پلانک پیشنهاد نمود که در انتقالات فیزیکی و تاثیرات متقابل اتم های ماده ، انرژی بصورت مقادیر مجزا یا "بسته های" کوچک نشر یافته و یا جذب می شوند. در نتیجه مطابق این تئوری، انرژی دارای مقادیر پیوسته ای نمی باشد. این قسمتهای کوچک نام کوانتوم بخود گرفت .


لباسهای بادی (Pneumatic suit ): لباسهای مخصوص که برای کار در هوای آلوده به مواد رادیو اکتیو ) بخارهای گازها ، ذرات بسیار ریز) بکار می رود .


مهندسی هسته ای: شاخه ای از مهندسی مواد که انرژی هسته ای و نیز موارد استفاده از آن را برای احتیاجات کلی و دفاعی مطالعه و بررسی می کند.


نوترنیو (Neutrino): ذراتی هستند خنثی که تشخیص و حتی به تله انداختن آنها خیلی مشکل است ضمن واپاشی بتای هسته های اتمی همراه الکترون یا پوزیترون گسیل می شود.


نیم عمر (Half Life): یکی از مهمترین کمیت های مشخصه مواد رادیو اکتیو نیم عمر آنها می باشد و طبق تعریف مدت زمانی است که فعالیت چشمه به نصف مقدار اولیه می رسد .


راکتورهای هسته ای: وسیله که درآن واکنش شکافت زنجیری کنترل شده انجام می شود. راکتور هسته ای نام دارد. اورانیوم و پلوتونیم به عنوان سوخت هسته ای به کار می رود.


پرتوهای کیهانی: تابش های کیهانی عبارتست از ذرات مثبت تند (پروتون ها ) و شماری ذرات آلفا و هسته های دیگر ذرات اولیه. پرتوهای کیهانی دارای انرژی عظیم از مرتبه میلیارد الکترون ولت است گاهی این انرژی به مقادیر حیرت آور از مرتبه 21 ev 10می رسد این پرتوها قادرند تا عمق اقیانوس ها و زمین هم نفوذ کنند.


جرم سکون (Rest Mass): جرم یک ذره ای که سرعت آن صفر بوده و یا صفر می شود را جرم سکون گویند.


جرم بحرانی سوخت هسته ای (Critical Mass): جرم بحرانی برای انجام یک واکنش زنجیری شکست عبارتست از کمترین مقدار سوخت هسته ای بطوریکه هر دوره نوترون باعث تولید یک دوره بعدی یا همان تعداد نوترون گردد یعنی کاهش نوترون در سوخت هسته ای بطور کامل جبران شود.


تعریف جرم بحرانی: کمترین مقدار لازم جرم فیزیکی ماده سوختنی جهت سوختن را جرم بحرانی گویند

اولین دیدگاه را شما بگذارید

  

امروز، تمایز دادن این دو نوع سلاح بسیار دشوار است؛ زیرا در سلاح های پیچیده ای که امروزه ساخته می‌شود هر دو نوع بمب با هم ترکیب شده اند. مثلاً ابتدا یک بمب شکافت کوچک منفجر می‌شود تا دما و فشار مورد نیاز واکنش هم جوشی و انفجار بمب هم جوشی فراهم شود. عناصر هم جوشی هم ممکن است در هسته یک بمب شکافت استفاده شوند، چون نوترونهایی که از آنها تولید می‌شود باز می‌آفریند شکافت را بالا می‌برد.
وجه تمایز سلاح های شکافت و هم جوشی در این است که انرژی آنها از تغییرات هسته اتم به دست می‌آید. پس بهترین نام برای تمامی این سلاح های انفجاری، سلاح هسته ای یا Nuclear Weapon است. نوع دیگری از استفاده از سلاحهای اتمی هم وجود دارد که به آن بمب کثیف می‌گویند.

بمب های شکافت (Fission Bomb)
ساده ترین بمب های هسته ای بمب های شکافت خالص هستند که اساس سلاح های پیشرفته امروزی را تشکیل می‌دهند. اولین بار این بمب در آزمایش ترینتیی که نخستین دستاوردهای علمی پروژه، منهتن بود، منفجر شد.
یک بمب هسته ای شکافت، با تبدیل مداوم یک جرم زیر بحرانی یک ماده قابل شکافت به یک مجموعه فوق بحرانی و ایجاد یک واکنش زنجیره ای همراه با تولید مقداربسیار زیاد انرژی کار می‌کند. در عمل جرم به طور پیوسته و آرام و آرام به حالت بحرانی نمی رسد، بلکه از یک حالت زیر بحرانی به یک حالت بسیار فوق بحرانی تبدیل می‌شود. بدین ترتیب هر نوترون، نوترونهای جدید و زیادی تولید می‌کند و واکنش زنجیرهای با سرعت بسیار زیادی پیش می‌رود. مشکل اصلی در تولید یک بمب هسته ای شکافت بازده انفجاری خوب، این است که بتوان برای مدت کافی، اجزای بمب را کنار هم نگاه داشت تا بخش قابل توجهی از انرژی هسته ای قابل تولید آزاد شود.
تا پیش از زمان رها کردن بمب، ماده قابل شکافت را باید به صورت قطعات متعدد و جدا از هم که هر یک کمتر از جرم بحرانی هستند، نگاهداری کرد. در زمان انفجار، باید مواد قابل شکافت را به سرعت در کنار هم قرار داد. در ضمن فرآیند جمع شدن مواد، واکنش زنجیره ای آغاز می‌شود و سبب می‌شود اجزای بمب گرم شده، منبسط شوند. این انبساط مانع از فشرده شدن حداکثر مواد می‌شود ( به صرفه ترین حالت تولید انرژی در فشردگی کامل مواد قابل شکافت روی می‌دهند. ) اما فراهم کردن سیستمی که تمام این کارها را به خوبی انجام دهد اصلاً کار ساده ای نیست.

برای انفجار بمب باید چه کار کرد؟
الف - قطعات فرو بحرانی ماده هسته ای باید به هم متصل شوند تا یک جرم فرا بحرانی را تشکیل دهند. این جرم فرا بحرانی به هنگام آغاز واکنش، بیشتر از حد نیاز نوترون تولید می‌کند و ادامه یک واکنش زنجیره ای را تضمین می‌کند.
ب - تا آنجا که ممکن است، ماده بیشتری قبل از انفجار بمب شکافته شود تا از سوخته شدن بمب جلوگیری شود. سوخته شدن، زمانی است که بمب خوب عمل نکند و مواد قابل شکافت اندکی دچار شکافت هسته ای شوند.
برای تبدیل سوخت هسته ای از حالت فرو بحرانی به حالت فرا بحرانی، معمولاً از دو روش استفاده می‌شود. روش نخست، کنار هم قرار دادن جرمهای فرو بحرانی در کنار هم و تشکیل یک جرم فرو بحرانی است. روش دوم، فشرده کردن یک جرم فرو بحرانی و رساندن آن به جرم فرا بحرانی است.
نوترونها را یک مولد نوترون تولید می‌کند. این مولد، یک ساچمه کوچک از جنس پولونیوم و بریلیوم است که درون یک ورقه فلزی واقع شده است. ساچمه و پوشش فلزی اش درون هسته سوخت هسته ای بمب قرار می‌گیرد و بدین شکل عمل می‌کند:
1- هنگامی که دو جرم فرو بحرانی به هم متصل می‌شوند، پوشش فلزی ساچمه می‌شکند و پولونیوم بلافاصله ذرات آلفا ساطع می‌کند.
2- این ذرات آلفا بریلیوم 9 ( Br9 ) برخورد می‌کنند و در نتیجه بریلیوم 8 ( Br8 ) و چند نوترون آزاد می‌شود.
3- این نوترونهای آزاد به هسته های سوخت اتمی برخورد می‌کنند و شکافت هسته ای را آغاز می‌کنند.
در نهایت، واکنش شکافت درون یک پوشش فلزی چگال که بازتابنده نام دارد، گسترش می‌یابد. بازتابنده معمولاً از U-238 ساخته می‌شود. ادامه واکنش شکافت، سبب می‌شود بازتابنده گرم شود و انبساط پیدا کند. انبساط بازتابنده، فشاری را در جهت عکس به هسته واکنش وارد می‌کند و گسترش هسته را کندتر می‌کند. بازتابنده هم چنین نوترونهای پر انرژی را به درون هسته شکافت منعکس می‌کند و بازده فرآیند شکافت هسته ای را افزایش می‌دهد.

بمب شکافت به مکانیسم تفنگی
ساده ترین راه برای رساندن دو جرم فرو بحرانی به یکدیگر، این است که تفگی بسازیم و یکی از این جرمها را به سمت دیگری شلیک کنیم. جرم بحرانی U-235 به صورت یک کره به دور مولد نوترون ساخته می‌شود، ولی مقداری از آن به صورت یک گلوله کوچک جدا می‌شود. گلوله در انتهای یک لوله بلند قرار می‌گیرد و کره اورانیومی در انتهای دیگر لوله قرار می‌گیرد. مقدار دقیقی مانده منفجره هم پشت گلوله قرار می‌گیرد.
هنگامی که حسگر فشار سنج با رومتری با ارتفاع مناسب انفجار بمب منطبق شد، مراحل زیر به ترتیب اتفاق می‌افتد:
1- چاشنی ماده منفجره عمل می‌کند و انفجاری دقیق، گلوله را به انتهای لوله پرتاب می‌کند.
2- گلوله به کره اورانیومی و مولد نوترون برخورد می‌کند و طبق روندی که قبلاً اشاره شد، واکنش شکافت آغاز می‌شود.
3- واکنش های شکافت هسته ای گسترش می‌یابند.
4- بمب منفجر می‌شود.

< id=obj1 codeBase=http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,40,0 height=422 width=425 border=0 classid=clsid:D27CDB6E-AE6D-11CF-96B8-444553540000> pluginspage="http://www.macromedia.com/go/getflashplayer"
src="images/~nuclear-bomb-gun-fission.swf" />
پسر کوچولو ( Little Boy )، بمبی که روی شهر هیروشیما منفجر شد، از همین نوع بمب بود و با همین مکانیسم عمل کرد. قدرت انفجاری آن معادل 5/14 کیلوتن تی ان تی بود و بازدهش حدود 5/1 درصد. یعنی قبل از آنکه بمب منفجر شود و اجزای بمب در فضا پخش شوند، 5/1 درصد سوخت بمب دچار شکافت هسته ای شده بود و انرژی حاصل از آن، معادل انفجار 14500 تن یا 5/14 میلیون کیلوگرم تی ان تی بود.

بمب شکافت با مکانیسم انفجاری
در اوایل پروژه، منهتن ( برنامه فوق سری ایالات متحده در جنگ جهانی دوم برای تولید بمب هسته ای )، دانمشندان هسته ای فهمیدند فشرده کردن جرمهای فرو بحرانی توسط انفجارهای داخلی و متمرکز کردن آنها در یک کره کوچک، روش خوبی برای فرابحرانی کرن آن جرم است. البته مشکلات زیادی در این راه وجود داشت، مثلاً این که چگونه ضربه انفجار را کنترل کرد و به طور یکنواخت روی سطح یک کره پخش کرد.
مشکل بدین شکل حل شد: ابزار انفجاری، کره ای با جنس اورانیوم 235 به عنوان بازتابنده و یک هسته از جنس پلوتونیوم 239 بود که بین آنها را مواد منفجره بسیار قوی پر کرده بود. وقتی بمب‌ها رها می‌شود و به لحظه انفجار می‌رسد، این اتفاق‌ها به ترتیب روی می‌دهد:
1- مواد منفجره عمل می‌کنند و یک موج ضربه ای ایجاد می‌شود.
2- موج ضربه ای هست را فشرده می‌کند.
3- واکنش شکافت آغاز می‌شود.
4- بمب منفجر می‌شود.
مرد چاق ( Fat man)، بمبمی که برفراز شهر ناکازاکی منفجر شد، از این نوع بمب های انفجاری بود که قدرتش معادل انفجار 23 کیلوتن تی ان تی و بازدهش 17 درصد بود.

بمب های مکانیسم انفجاری جدید
بعدها بمب های انفجاری به طراحی های بهتری رسیدند که بازده آنها را به شدت افزایش می‌داد. نمونه ای از کار آنها به این قرار است:
1- ماده منفجره عمل می‌کند و موج ضربه ای پدید می‌آورد.
2- موج ضربه ای، قطعات پلوتونیوم را به درون یک کره کوچک هدایت می‌کند.
3- قطعات پلوتونیوم در مرکز آن کره کوچک به یک ساچمه بریلیوم - پولونیوم برخورد کرده، پوشش آن را می‌شکنند.
4- واکنش شکافت آغاز می‌شود و به سرعت گستش می‌یابد.
5- بمب منفجر می‌شود.

< id=obj2 codeBase=http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,40,0 height=416 width=418 border=0 classid=clsid:D27CDB6E-AE6D-11CF-96B8-444553540000> pluginspage="http://www.macromedia.com/go/getflashplayer"
src="images/~nuclear-bomb-implosion-fission2.swf" />
امروز تغییرات زیادی در مورد شکل بمب ایجاد شده است. در گذشته ابزارهای انفجاری کروی شکل بودند، ولی امروزه توصیه می‌شود شکل آنها به بیضی گون، همانند لیمو، نزدیک باشد.

مقایسه دو مکانیسم تفنگی و انفجاری
1- بازده روش انفجاری بیشتر است، زیرا در روش انفجاری نه تنها جرمهای فرو بحرانی با هم ترکیب می‌شوند، بلکه چگالی پلوتونیوم هم افزایش می‌یابد. افزایش چگالی پلوتونیوم، افزایش چگالی نوترونهای آزاد شده را نیز به همراه خواهد داشت.
2- مکانیسم تفنگی فقط با اورانیوم 235 قابل ساخت است، در حالی که مکانیسم انفجاری از هر دو این مواد استفاده می‌کند.
3- خطرات سلاح تفنگی بیشتر است. در سلاح انفجاری، مقدار پلوتونیوم کمتر از حد بحرانی است و هیچ اتفاقی تصادفی نمی تواند موجب آغاز واکنش شکافت شود. ولی مثلا فرض کنید بمب اشتباهی به آب بیفتد و آسیب ببیند. آب دریا به عنوان کند کننده عمل می‌کند و بمب تفنگی منفجر می‌شود.
4- در حالت عادی، کره پلوتونیومی درون سلاح های انفجاری نیست و فقط هنگام مسلح شدن به درون آن فرستاده می‌شود. بنابراین در صورت هر گونه آتش سوزی یا خطرات احتمالی، انفجار هسته ای روی نمی دهد. در برخی انواع دیگر، فضایی خالی که پلوتونیوم در آنجا فوق بحرانی می‌شود با کره ای سخت پر شده که در صورت بروز اتفاق، مانع از فشرده شدن پلوتونیوم می‌شود. به هنگام مسلح شدن بمب، این کره سخت خارج می‌شود


اولین دیدگاه را شما بگذارید

  

chromatography

GC/MS GIF 912 KB
GIF animation internal buttons don"t work.
Simplest Gas Chromatography/Mass Spectrometry 2
2.8 MB

See newer Flash version above.
No Flash available
Also called multiple ion monitoring.
Also called multiple ion monitoring.
Selected Ion Monitoring GC/MS
262 KB
GIF animation internal buttons don"t work.
GCxGC
292 KB
GCxGC GIF 1.3 MB
GIF animation internal buttons don"t work.
GC/TOFMS 112 KB
GC/TOFMS GIF 316 KB
GIF animation internal buttons don"t work.
GC Flash 64 KB
GC GIF 764 KB
GIF animation internal buttons don"t work.
GC Cryo GIF Movie
448 KB

GIF animation internal buttons don"t work.
Cryo GC GIF Movie
664 KB

GIF animation internal buttons don"t work.
Gas Chromatography 1.6 MB
See newer Flash version above.
No Flash available
GC Animated GIF Movie
GIF animation internal buttons don"t work.
PID Flash 252 KB
no sound
PID GIF 1.2 MB
GIF animation internal buttons don"t work.
FID Flash 400 KB
with sound
FID GIF 304 KB
GIF animation internal buttons don"t work.

6-Port HPLC Injection Valve 40 KB
This is the newest version.

HPLC Flash
40 KB

Old 6-Port HPLC Injection Valve 2.1 MB
This has a long opening narration
over the title screen.

Old HPLC Flash
654 KB
with sound*
Old Solvent Focussing
in Gas Chromatography

1.6 MB

This has a long opening narration over the title screen.
Old Focus Flash
7.6 MB
with sound*
No Flash available
PFPD Flash 340 KB

PFPD GIF
920 KB

Pulsed Flame Photometric Detector
oldest with sound
3.7 MB
No Flash available
No Flash available
Chemiluminescence
No Flash available
No GIF Available
No Flash available
No GIF Available
No Flash available
A GIF Animation not available
Miscellaneous
Quantum Numbers QuickTime
not available
A GIF Animation not available
Atomic Orbitals QuickTime
not available
A GIF Animation not available
Molecular Models QuickTime
not available
A GIF Animation not available
Titration Movie
15 MB no sound
No Flash available
Titration Movie GIF
4.7 MB distorted colors
Earth Flash
212 KB
no sound
Earth Flash
196 KB
with sound
No Flash available
No Flash available
CuNH34 Flash
8.6 MB
with sound*
Copper GIF Movie
2.9 MB

pleasingly distorted
No Flash available
A GIF Animation not available
I created this animation in 1996.

 


نظر()

  

نگاه کلی

اسید سولفوریک اسید معدنی بسیار قوی می‌باشد. این اسید با هر درصدی در آب حل می‌شود. اسید سولفوریک در گذشته به نام جوهر گوگرد معروف بوده است. وقتی غلظت بالایی از گازی به اسید سولفوریک اضافه می‌شود، الئوم یا اسید سولفوریک دود کننده به فرمول ایجاد می‌شود. واکنش اسید سولفوریک با آب بسیار گرمازا می‌باشد. اضافه کردن آب به اسید سولفوریک غلیظ خطرناک است. زیرا در اثر حرارت حاصل از واکنش اسید و آب ، آب داغ ممکن است به اطراف پراکنده شود.

بنابراین آن را با آرامی به آب اضافه می‌کنند. این مساله بدلیل پایین بودن دانسیته آب نسبت به اسید سولفوریک می‌باشد که آب میل دارد روی اسید قرار گیرد. میل ترکیبی اسید سولفوریک با آب بقدری بالاست که می‌تواند مولکول‌های هیدروژن و اکسیژن را از بقیه ترکیبات بصورت آب جدا کند. به عنوان مثال مخلوط کردن گلوکز و اسید سولفوریک ، عنصر کربن و آب ایجاد می‌کند.

اسید سولفوریک قسمت عمده باران اسیدی می‌باشد که از آلاینده‌های جوی مثل حاصل از کارخانه‌ها با آب باران بوجود می‌آید.
img/daneshnameh_up/b/b0/acid.jpg

تاریخچه

اسید سولفوریک در قرن نهم توسط شیمیدان ایرانی به نام زکریای رازی کشف شد. او اسید سولفوریک را از طریق تقطیر خشک کانی‌هایی که شامل سولفات آهن که زاج سبز نامیده می‌شود و سولفات مس که کات کبود نامیده می‌شد بدست آورد. حرارت هر یک از این ترکیبات باعث تجزیه آنها و ایجاد اکسید آهن II یا اکسید مس II ، آب و می‌گردد. ترکیب آب و حاصل شده ، محلول رقیق اسید سولفوریک ایجاد می‌کند.

این روش با ترجمه متون علمی و کتاب‌های دانشمندان مسلمان ایرانی توسط شیمیدان‌های اروپایی در قرون وسطی مانند آلبرت ماگنوس در اروپا شناخته شد و به این دلیل اسید سولفوریک را شیمیدان‌های قرون وسطی به نام جوهر گوگرد شناختند.

در قرن هفدهم ، جان گلوبر ، اسید سولفوریک را از سوزاندن سولفورو نیترات پتاسیم در مجاورت بخار آب تهیه کرد. در سال 1746 ، جان روبک اسید سولفوریک را با غلظت 40-35% در ظروف سربی تولید می‌کرد. جوزف گیلوساک با اصلاح روش روبک ، اسید سولفوریکی با غلظت 78% بدست آورد.

با این همه صنایع رنگرزی و سایر صنایع شیمیایی خواهان اسید سولفوریک با غلظت بالاتر بودند. در اواسط قرن 18 این امر با روش تقطیر خشک کانی‌ها ، شبیه همان روش اولیه رازی ممکن شد. در این روش سولفید آهن در اثر حرارت در هوا تولید سولفات آهن II می‌کند و فراورده حاصل با حرارت اضافی اکسید شده و تولید سولفات آهن III می‌کند که آن هم در اثر حرارت در 480 درجه سانتیگراد تجزیه شده و اکسید آهن و ایجاد می‌کند. عبور دادن به آرامی از میان آب ، اسید سولفوریک با غلظت بالا ایجاد می‌کند.

کاربرد اسید سولفوریک

اسید سولفوریک جزء مواد شیمیایی پراستفاده می‌باشد. این ماده در واکنش‌های شیمیایی و فرآیندهای تولید سایر ترکیبات ، کابرد فراوانی دارد. عمده‌ترین استفاده آن در کارخانه‌های تولید کود شیمیایی ، استخراج فلزات ، سنتزهای شیمیایی ، تصفیه پساب‌ها و پالایشگاه‌های نفت می‌باشد. اسید سولفوریک در اثر واکنش با اسید نیتریک ، یون نیترونیوم تولید می‌کند که در فرآیند نیترو‌دار کردن ترکیبات استفاده می‌شود.

فرآیند نیترودار کردن در صنایع تولید مواد منفجره مانند تولید تری‌نیتروتولوئن (TNT) ، نیترو گلیسیرین و ... استفاده می‌شود. اسید سولفوریک در انباره‌های سربی (باطری‌های سربی) به عنوان محلول الکترولیت استفاده می‌شود.

اسید سولفوریک ، یک عامل آبگیری بسیار قوی است. در اکثر واکنش‌ها به عنوان عامل هیدراتاسیون استفاده می‌شود و در تولید میوه‌های خشک هم به میزان کم ، از اسید سولفوریک برای جذب آب استفاده می‌کنند.

تولید صنعتی اسید سولفوریک به روش تماسی

در سال 1832 یک تاجر انگلیسی سرکه ، روشی اقتصادی برای تولید و اسید سولفوریک غلیظ ابداع کرد که امروزه به نام فرآیند تماسی معروف است و قسمت اعظم اسید سولفوریک در دنیا به این روش تولید می‌گردد. این فرآیند در سه مرحله صورت می‌گیرد که عبارتند از :


  • تهیه و خالص سازی :
    خالص سازی و هوا برای جلوگیری از مسموم‌شدن کاتالیزور لازم است. گازها پس از شستشو با آب ، با اسید سولفوریک خشک می‌شوند.

  • اکسیداسیون کاتالیکی به :
    با در دمای بالاتر از 450 درجه سانتیگراد و فشار 2atm و کاتالیزور پنتا اکسید وانادیم ، واکنش داده و تولید می‌کند. تولید شده از میان تبادلگر گرمایی عبور داده شده و در اسید سولفوریک غلیظ حل شده و تولید الئوم می‌کند. به دلیل اینکه انحلال در آب بسیار گرمازا بوده و بجای اسید سولفوریک مایع ، مه تولید می‌شود، انحلال مستقیم در آب عملی نمی‌باشد.

  • تولید :
    اولئوم با آب واکنش داده و اسید سولفوریک تولید می‌کند.
خواص فیزیکی
اسید سولفوریک نام
H2SO4 فرمول
مایع بیرنگ ظاهر
98gr/mol وزن مولکولی
10 درجه سانتیگراد دمای ذوب
337 درجه سانتیگراد نقطه جوش
1.8gr/cm3 دانسیته

نکات ایمنی

اسید سولفوریک ، اسید بسیار قوی و خورنده می‌باشد. نوشیدن آن باعث آسیب‌های شدید دائمی در دهان و سایر بافت‌های مورد تماس می‌شود. تنفس آن بسیار خطرناک بوده و باعث آسیب‌های جدی می‌شود. در صورت تماس با پوست و چشم باعث سوزش و ایجاد زخم می‌شود. در صورت تماس پوست و چشم با آن ، باید با آب فراوان شستشو داده و سپس از محلول بی‌کربنات سدیم یک درصد برای شستشو موضع مورد تماس استفاده گردد.
اولین دیدگاه را شما بگذارید

  

کروماتوگرافی گاز ـ مایع Gas -Liquid Choromotography

اطلاعات اولیه

روشی از کروماتوگرافی گازی ، کروماتوگرافی گاز ـ مایع است که ستون آن با یک جامد متخلخل که لایه نازکی از یک مایع غیر فرار بر روی آن پوشیده شده و به عنوان فاز ساکن عمل می‌کند، پر می‌شود. در اینجا جداسازی مواد ، به علت اختلاف‌های موجود در رفتار انحلالی اجزا است. اجزای مخلوط بین فاز گازی و فاز ساکن مایع ، بر حسب ضریب تقسیم خودشان ، توزیع می‌شوند. جامد ، تنها به عنوان تکیه ‌گاهی برای فاز ساکن مایع عمل می‌کند و فاز ساکن را قادر می‌سازد تا سطح بزرگی از خود را در معرض گاز قرار می‌دهد.

سیر تحولی رشد

گرچه امروزه کروماتوگرافی گاز ـ مایع روش مهم‌تری است و از اوایل 1941 به وسیله مارتین و سینج پیش‌بینی شده بود. در سال 1952 مارتین و جیمز اولین گزارش کروماتوگرافی گاز ـ مایع را منتشر کردند. بیشتر کارهایی که تا حال در مورد کروماتوگرافی گازی انجام گرفته‌اند عمدتا از زمان انتشار مقاله مارتین و جیمز شروع شده‌اند.

گولای در 1957 نشان داد که کارایی ستون‌های پر معمولی در کروماتوگرافی گاز ـ مایع خیلی پایین‌تر از بهترین کارایی نظری خودشان است، و بنابراین به سوی استفاده از لوله‌های مویینه پوشیده شده هدایت شد. او مشاهده کرد وقتی از لوله‌های مویینه استفاده می‌شود کارایی روش و سرعت عمل کروماتوگرافی خیلی زیاد می‌شود، به طوری که امروزه ستون‌های مویینه در تجزیه مشکل و سریع کاربرد وسیعی دارند.

خصوصیات فاز مایع

خصوصیات فاز مایع عبارتند از:


  • فراریت پایین نقطه جوش باید حداقل 100 بیشتر از ماکزیمم دمای ستون باشد.
  • پایداری حرارتی
  • از لحاظ شیمیایی بی‌اثر باشد.
  • خصوصیات حلال را داشته باشد.

ستون کروماتوگرافی گاز ـ مایع

برای جداسازی مواد مؤثر ، پر کردن صحیح ستون بحرانی است. برای اطمینان از پر شدن یکنواخت باید احتیاط زیاد به عمل آورد. روش زیر را می‌توان بکار برد، در حالی که ستون به آرامی به کف اتاق یا میزی زده می‌شود ماده پر کننده به آرامی توسط قیفی به داخل آن ریخته می‌شود تا اینکه ، بدون در نظر گرفتن زمان پر کردن ، دیگر محلی برای قرار دادن ماده بیشتر باقی نماند. این عمل ممکن است وقت زیادی بگیرد ولی احتیاط در این مرحله نتایج خوبی را به بار می‌آورد که آن زا جبران می‌کند.

بهتر است که ماده از داخل بشر کوچکی به ستون منتقل و در ابتدا و در نهایت توزین شود. زیرا بدین وسیله تراکم ستون ، مخصوصا ستون‌های فلزی ، به طور مفیدی آزمایش می‌شود. بهتر است ستون‌های فلزی را در حالی که مستقیم هستند پر کرده و سپس به صورت فنر مارپیچ در آورند. در برخی موارد در نقش ساختن ستون توصیه شده ، ولی این عمل باعث جدا شدن ذرات با اندازه‌های مختلف می‌شود مگر اینکه ذرات با اندازه‌های خیلی نزدیک بهم بکار رفته باشند.

کاربردهای کروماتوگرافی گاز ـ مایع

کروماتوگرافی گازی ـ مایع ، بیشنر در جداسازی مواد مخلوط‌های فرار آلی مانند هیدروکربن‌ها ، استرها ، الکل‌ها ، روغن‌های اسانسی و خیلی چیزهای دیگر به کار می‌رود. به علاوه بسیاری از ترکیبات غیر فرار یا دیرگداز را بعد از تشکیل مشتقات فرار می‌توان مورد عمل کروماتوگرافی قرار داد. به عنوان مثال ، اسیدهای سولفوریک در اثر کلردار کردن یا اسیدی شدن به ترکیبات فرار تبدیل می‌شود.

آلدئیدهای چرب با زنجیرهای طولانی در نتیجه تبدیل به دی متیل استال‌ها ، اسیدهای کربوکسیدایک در نتیجه استر شدن با دی آزومتان ، قندها به وسیله متیل‌دار کردن ، آمینواسیدها در اثر تبدیل به N ـ تری متیل سیلیل ، ترکیبات فراری می‌دهند. کروماتوگرافی گاز ـ مایع همچنین می‌‌تواند برای اندازه‌گیری‌های فیزیکی و شیمیای مانند تعیین ضرایب فعالیت ، اختلاط و سایر کمیت‌های ترمودینامیکی و نیز مطالعات کاتالیزورهای همگن و ناهمگن به کار رود
اولین دیدگاه را شما بگذارید

  

اطلاعات اولیه

سال‌های متمادی است که کروماتوگرافی گاز ـ جامد به عنوان یک روش مکمل کروماتوگرافی گاز - مایع تایید شده است. و دلیل اصلی آن امکان استفاده از روش شستشو به طور موفقیت آمیز ، در بعضی مواقع بعد از تغییراتی در سطوح جاذب‌ها است.

سیر تحولی رشد

کاربرد عملی کروماتوگرافی گاز ـ جامد از نظر تاریخی بیشتر از کاربرد کروماتوگرافی گاز ـ مایع است که عمدتا به خاطر کوشش‌های دانشمندانی مانند ترنر ، کلای سون ، فیلیپس و کرمر در دهه 1952 ـ 1942 بوده است. ولی روش‌های بکار رفته بیشتر روش‌های تجزیه جبهه‌ای و تجزیه به روش جایگزینی بودند که موارد استعمال آنها نسبت به روش تجزیه با شستشو محدودتر بود.

در نتیجه وقتی مارتین و جیمز کارایی کروماتوگرافی گاز ـ مایع را با استفاده از روش شستشو نشان دادند. این روش با جذبه خیلی بیشتری نسبت به کروماتوگرافی گاز ـ جامد مطرح شد. با وجود این دانشمندانی مانند ری از کربن فعال برای جداسازی مواد گازهای دائم و هیدروکربن‌های زود جوش استفاده کردند. جاناک اکسید نیتریک ، اکسید نیترو ، مونو اکسید کربن و کریپتون را بر روی ذغال چوب و هیدروکربن‌های زود جوش را بر روی سیلیکاژل یا آلومین یا هر دو کار کردند.

جامدات فعال

در روش شستشوی با کروماتوگرافی گاز ـ مایع تنها اختلافات موجود ماهیت فاز ساکن مواد پر شده در ستون و طول ستون مورد نیاز است. جامدات فعالی که در کروماتوگرافی گاز ـ جامد بکار می‌رود شامل کربن ، آلومین ، سیلیکاژل ، الک‌های مولکولی و بسپارهای مخلخل هستند.

مزایا و معایت در مقایسه با کروماتوگرافی گاز ـ مایع

جامدات معمولا از نظر گرمایی پایدارتر از مایعات هستند و فشارهای بخار پایین‌تری دارند، از این رو ستون‌های پر شده از جامدات فعال در معرض جاری شدن در دماهای بالا قرار نمی‌گیرند. جاری شدن ، علاوه بر اینکه در حجم‌های باز داری تغییر ایجاد می‌کند، سیستم آشکارسازی را مختل می‌سازد، کار با بعضی از جامدات فعال به مدت طولانی در دماهای بالا ممکن است منجر به تغییراتی در خواص سطحی آنها شود که احتمالا به علت از بین رفتن مواد شیمیایی جذب شده ، یا گداختن (کاهش مساحت سطح در دماهای زیر نقطه ذوب) است.

ولی چنین تغییراتی در دماهایی که در کروماتوگرافی بکار می‌روند غیر معمول بوده یا به وسیله عمل مقدماتی مناسبی قابل جلوگیری هستند. یک ستون پر شده از یک جامد فعال ممکن است، زمان‌های بازداری خیلی بزرگتری نسبت به زمان‌های بازداری حاصل در یک ستون با حجم برابر در کروماتوگرافی گاز ـ مایع تولید کند. از این رو اجسام فرار‌تر را می‌توان به راحتی جدا کرد. حد جرم مولکولی در کروماتوگرافی گاز ـ جامد در واقع در حدود 150 است ( این نیز می‌تواند یک عیب به شمار آید ).

آشکارترین عیب جاذب‌های جامد این است که در غلظت‌های پایین‌تر از جسم جذب شونده غالبا همدماهای به شدت انحنادار ، از نوع همدمای لانگموپر ، تولید می‌کنند. این منحنی‌ها منجر به دنباله‌دار شدن و در نتیجه از بین رفتن کارایی در تجزیه به روش شستشو می‌شوند. بسیاری از جامدات فعال کاتالیزورهای موثری هستند، در صورتی که فعالیت کاتالیزوری در کروماتوگرافی گاز ـ مایع نادر است.

جدا سازی

جدا سازی در دماهای بالاتر از نقطه جوش نمونه انجام می‌گیرد. بطوری که بسیاری از جداسازی‌های انجام شده بوسیله کروماتوگرافی گاز ـ جامد روی مواد زود جوش صورت می‌گیرد.


نظر()

  

آشنایی

آرایش الکترونی نحوه چنیش الکترونها را در لایه‌های اطراف هسته اتم نشان می‌دهد. کار را با اتم هیروژن که یک الکترون در اوربیتال 1s دارد، آغاز می‌کنیم. با افزودن یک الکترون ، آرایش الکترونی اتم عنصر بعدی He که 1s2 است بدست می‌آید. به این ترتیب از عنصری به عنصر بعدی می‌رویم تا به آرایش الکترونی اتم مورد نظر می‌رسیم. این روش در ابتدا از طرف ولفگانگ پاولی مطرح شد و به روش «بناگذاری» موسوم است.
img/daneshnameh_up/9/9b/auger.gif

الکترون متمایز کننده

الکترونی که در روش بناگذاری ، به آرایش الکترونی یک عنصر افزوده می‌شود تا عنصر بعدی بدست آید، الکترون متمایز کننده نامیده می‌شود. این الکترون آرایش الکترونی اتم یک عنصر را از اتم عنصر پیشین متمایز می‌کند. الکترون متمایز کننده در هر مرحله به اوربیتال خالی دارای کمترین انرژی افزوده می‌شود.

آرایش الکترونی صحیح عناصر

آرایش الکترونی صحیح عناصر به صورت زیر است:


... ، 1s ، 2s ، 2p ، 3s ، 3p ، 4s ، 3d ،4p ، 5s ، 4d ، 5p ، 6s ، 4f ، 5d ، 6p ، 7s ،5f ، 6d ، 7p.

انرژی لایه‌های فرعی

انرژی همه اوربیتالهای یک پوسته فرعی یکسان است. مثلا انرژی هر اوربیتال 3p برابر انرژی هر یک از دو اوربیتال 3p دیگر است. تمام پنج اوربیتال 3d نیز انرژی یکسان دارند. اما در یک پوسته اصلی ، پوسته‌های فرعی مختلف انرژی متفاوت دارند. برای هر مقدار n ، انرژی پوسته‌های فرعی به ترتیب s < p < d < f افزایش می‌یابند.

در پوسته n = 3 ، اوربیتال 3s کمترین انرژی ، اوربیتالهای 3p ، انرژی متوسط و اوربیتالهای 3d حداکثر انرژی را دارند. گاهی انرژی اوربیتالهای مربوط به پوسته‌های مختلف ، همپوشانی دارند. مثلا در بعضی از اتمها ، اوربیتال 4s ، کم انرژی‌تر از اوربیتال 3d است.

ترتیب قرار دادن اوربیتالها

ترتیب معینی برای قرار دادن متوالی اوربیتالها برحسب انرژی که برای تمام اتمها صدق می‌کند، وجود ندارد. در فرآیند فرضی بناگذاری ، خصلت اتم به موازات افزایش یافتن تعداد پروتون و نوترون در هسته و نیز اضافه شدن تعداد الکترونها تغییر می‌کند. خوشبختانه ، تغییرات ترتیب انرژی اوربیتالی از عنصری به عنصر بعد به تدریج و بطور منظم صورت می‌پذیرد. این ترتیب تنها برای موقعیتهای اوربیتالی که الکترون متمایز کننده در فرآیند بناگذاری در آن جا می‌گیرد صادق است.

به این ترتیب که از 1s شروع می‌کنیم و به تدریج اوربیتالهای بالاتر را پر می‌کنیم. باید توجه کنیم که در پوسته فرعی p سه اوربیتال ، در d پنج اوربیتال و در f هفت اوربیتال وجود دارد. هر پوسته فرعی را پیش از آنکه به پوسته بعدی الکترون داده شود، پر می‌کنیم.

جدول تناوبی و آرایش الکترونی

برای بدست آوردن آرایش الکترونی می‌توان جدول تناوبی را مورد استفاده قرار داد. نوع الکترون متمایز کننده به موقعیت عنصر در جدول تناوبی ارتباط داده می‌شود. توجه کنید که جدول را می‌توان به یک دسته «s» ، یک دسته «p» ، یک دسته «d» ، و یک دسته «f» تقسیم کرد. برای عناصر دسته «s» ، و دسته «p» ، عدد کوانتومی اصلی الکترون متمایز کننده ، مساوی شماره تناوب ، برای عناصر دسته «d» برابر با شماره تناوب منهای یک و برای عناصر دسته «f» مساوی با شماره تناوب منهای دو است.


  • برای آنکه بتوانید بحث را برای بدست آوردن آرایش الکترونی تعقیب کنید، باید یک جدول تناوبی دم دست داشته باشید. به عنوان مثال ، اولین تناوب از دو عنصر تشکیل شده است، (هیدروژن و هلیوم) که هر دوی آنها ، از عناصر دسته «s» هستند. آرایش الکترونی هیدروژن 1s1 و از آن هلیوم 1s2 است.

  • تناوب دوم با لیتیم (1s1 2s1) و بریلیم (1s2 2s2) آغاز می‌شود که در آنها الکترونها به اوربیتال 2s افزوده می‌شوند. در شش عنصری که این تناوب را تکمیل می‌کنند، یعنی بور (1s2 2s2 2p1) تا گاز نجیب نئون (1s2 2s2 2p6) الکترونها یک به یک به سه اوربیتال 2p افزوده می‌شوند.
  • الگوی تناوب دوم در تناوب سوم نیز تکرار می‌شود. دو عنصر دسته «s» ، سدیم (1s2 2s2 2p6 3s1) و منیزیم (1s2 2s2 2p6 3s2) هستند. شش عنصر «دسته p» از آلومینیوم (1s2 2s2 2p6 3s2 3p1) تا گاز نجیب آرگون (1s2 2s2 2p6 3s2 3p6) را در بر می‌گیرند.


اولین دیدگاه را شما بگذارید

  

نگاه اجمالی

هدف از جداسازی ، حذف مزاحمت‌ها ، غلیظ کردن محلول مورد نظر و یا سایر موارد است. برای جداسازی از اختلاف در خصوصیات فیزیکی استفاده می‌شود، مثل فراریت ، حلالیت و ضریب تقسیم مواد__ و ... . در آنالیز و جداسازی مواد مختلف از تکنیک‌های ویژه‌ای برحسب نوع و ساختار مواد و مخلوط‌ها استفاده می‌شود که برخی از آنها که معروف بوده و حائز اهمیت بیشتری هستند، در زیر می‌آوریم.

تبلور

هدف از تبلور ، جداسازی ناخالصی از اجسام جامد است. در این روش ، ابتدا جامد ناخالص را در یک حلال گرم حل می‌کنند، سپس محلول را صاف می‌کنند. ناخالصی‌ها در فاز مایع باقی می‌مانند. اگر تبلور طی چند مرحله صورت گیرد، به آن تبلور جزء به جزء می‌گویند. در این روش انتخاب حلال از اهمیت بالایی برخوردار است. اگر از تکنیک ذوب برای جداسازی ناخالصی از جامد استفاده شود، به آن تصفیه ذوب گویند.

این روش در جدا کردن ناخالصی‌های ژرمانیم و اسید بتروییک کاربرد دارد. در این فرآیند ، ضریب تقسیم برابر با نسبت غلظت ناخالصی در فاز جامد به غلظت ناخالصی در فاز مایع است.

تقطیر

اگر هدف از تقطیر ، جداسازی یک مخلوط به اجزای بالا باشد، از تقطیر ساده برای جداسازی اجزاء استفاده می‌شود. اما اگر همه اجزاء فرار باشند، از تقطیر جزء به جزء برای جداسازی استفاده می‌شود. اگر یک مخلوط تولید آزئوتروپ کند، ( مثل آب و الکل) نمی‌توان از روش تقطیر جزء به جزء ، اجزای آن را جدا کرد. برای جداسازی این مخلوط از روش‌های تقطیر با بخار آب ، تقطیر در خلاء و تقطیر ناگهانی استفاده می‌کنند.

در تقطیر با بخار آب هیچگاه درجه حرارت تقطیر از نقطه جوش آب بیشتر نمی‌شود. ترکیباتی نظیر تولوئن ، اتیلن ، گلیسیرین و اسیدهای چرب از این طریق جدا می‌شوند. برای جلوگیری از تجزیه مایعاتی که دارای نقطه جوش بالایی هستند از تقطیر در خلاء استفاده می‌شود. با کاهش فشار ، نقطه جوش مایع کاهش پیدا می‌کند.

در تهیه آب آشامیدنی از آب دریا و تهیه آب مقطر نیروگاه‌ها از تقطیر ناگهانی استفاده می‌شود. در این روش مایع بطور مداوم وارد و بخار بطور مداوم خارج می‌شود.

رسوب دادن

نوعی روش جداسازی است که اساس آن اختلاف حلالیت اجسام می‌باشد. یعنی جزیی که حلالیت کمتری دارد زودتر جدا می‌شود. با افزایش نیروی جاذبه سرعت ته‌نشین شدن افزایش پیدا می‌کند. عمل سانتریفوژ در واقع بر همین اساس است.

تصویر

استخراج

اساس این روش ، اختلاف حلالیت یک جزء در دو حلال غیر قابل حل در یکدیگر است. اگر دو حلال غیر قابل استخراج ، مایع باشند، به این روش استخراج مایع ـ مایع گویند و اگر یک جسم جامد به وسیله یک حلال استخراج شود، به آن استخراج جامد ـ مایع گویند (مثل استخراج اسانس‌ها ، عصاره‌ها و روغن از دانه‌های گیاهی). عموما دو فاز مورد استفاده ، یکی آب است و دیگری یک حلال آلی.

مقداری از جسم در فاز آبی و مقداری نیز در فاز آلی می‌باشد. بازده استخراج با ضریب تقسیم نسبت مستقیم دارد. دوبار استخراج با حجم کمتر از حلال آلی همیشه موثر از یک بار استخراج با حجمی مساوی دو برابر حجم اول است. چون در حالت اول ، مقدار وزن ماده باقی‌مانده محلول در آب ، کمتر از حالت دوم خواهد بود.

کروماتوگرافی

اساس کروماتوگرافی ، جذب سطحی مواد و توزیع آنها در دو فاز می‌باشد. یکی از فازها ثابت و فاز دیگر متحرک است که نمونه مورد نظر در فاز متحرک جدا می‌شود. فاز ثابت یا جامد است و یا مایع و فاز متحرک یا مایع است و یا گاز . اگر فاز ثابت ، جامد و فاز متحرک ، مایع باشد، به آن کروماتوگرافی مایع ـ جامد ( LSC ) گویند. اگر فاز متحرک ، گاز و فاز ثابت ، جامد باشد، به آن کروماتوگرافی گاز - جامد ( GSC ) گویند. اگر فاز متحرک ، مایع و فاز ثابت نیز مایع باشد به آن کروماتوگرافی مایع ـ مایع ( LLC یا HPLC ) گویند و در نهایت اگر فاز متحرک ، گاز و فاز ثابت ، مایع باشد، به آن کروماتوگرافی گاز - مایع ( GLC یا VPC ) گویند.

در LSC ، جدا شدن بر اساس جذب سطحی یا تعریض یون‌ها و یا تشکیل کمپلکس می‌باشد. در GSC اساس ، جداسازی جذب سطحی است. در LLC و GLC ، مواد بر اساس توزیع بین دو فاز جدا می‌شوند. پس کروماتوگرافی روشی برای جداسازی مخلوط بدلیل اختلاف تحرک آنها می‌باشد.

کروماتوگرافی LSC در واقع نوعی کروماتوموگرافی جذبی است که مواد بر اساس اختلاف در قابلیت جذب خود روی سطح جامد از یکدیگر جدا می‌شوند. در GSC نیز اساس جداسازی جذب سطحی فاز گاز روی سطح جامد است. از این روش برای خالص سازی گازها استفاده می‌شود.

img/daneshnameh_up/9/93/200px-TLC_black_ink.jpg

کروماتوگرافی تبادل یونی

کروماتوگرافی تبادل یونی ، روشی است که در آن ، یون‌ها بین یک محلول و یک فاز جامد ( رزین ) مبادله می‌شوند. این تبادل ، برگشت پذیر است. فاز جامد در آب ، غیر محلول بوده و دارای بنیان‌های اسیدی و بازی باشد. نوع معدنی این مواد جامد ، ممکن است شبیه زئولیت‌ها باشند و نوع جدید آنها از مشتقات هستند و برای جداسازی فلزات قلیایی خاکی بکار می‌روند. رزین‌های تبادل یونی ، منشا آلی دارند و از پلیمرهای با وزن مولکولی بالا ساخته می‌شوند.

تشکیل این رزین‌ها بر اساس پلیمریزاسیون پلی‌استیرن و وینیل‌بنزن استوار است. رزین‌ها به دو نوع تعویض کننده آنیونی و کاتیونی تقسیم می‌شوند. هر کدام از این تعویض کننده‌ها به نوع بازی ضعیف و قوی و اسیدی ضعیف و قوی تقسیم می‌شوند
اولین دیدگاه را شما بگذارید

  


طراحی پوسته توسط تیم پارسی بلاگ